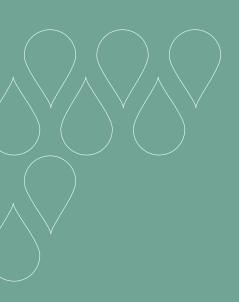
MONITORING PLANS FOR LOUISIANA'S SYSTEM-WIDE ASSESSMENT AND MONITORING PROGRAM

ABOUT THE WATER INSTITUTE OF THE GULF


The Water Institute of the Gulf is a not-for-profit, independent research institute dedicated to advancing the understanding of coastal, deltaic, river and water resource systems, both within the Gulf Coast and around the world. This mission supports the practical application of innovative science and engineering, providing solutions that benefit society. For more information, visit www.thewaterinstitute.org.

CONTRIBUTING AUTHORS

Scott Hemmerling (The Water Institute of the Gulf) was the primary author of this report and Principal Investigator for the study. He was also responsible for collection and analysis of all human systems data, including socioeconomic analyses and survey sampling design. Melissa Baustian (The Water Institute of the Gulf) was responsible for collection and analysis of all natural systems data, included power analyses and sample size recommendations. Scott Hemmerling and Melissa Baustian were responsible for project formulation and execution, including data analysis, interpretations, and report presentation. Water Institute of the Gulf researchers Harris Bienn, Alyssa Dausman, Alaina Grace, Lauren Grimley, Adrian McInnis, Michael Vingiello, and Huy Vu provided support throughout the study and contributed to written sections of the report.

The project was completed in cooperation with Dynamic Solutions, Emergent Method, and the U.S. Geological Survey. Shaye Sable (Dynamic Solutions) was responsible for assessment and development of the nekton community composition and oyster biomass monitoring plans. Britt Gentile and Phillip LaFargue (Emergent Method) were responsible for the layout and design of this report. Ann Hijuelos (U.S. Geological Survey) was the primary author of all previous versions of this report and contributed to written sections of this report. Sarai Piazza and Camille Stagg (U.S. Geological Survey) contributed text to the wetland vegetation community composition and biomass paragraphs of the biotic integrity section.

The Water Institute of the Gulf worked under the guidance of CPRA's Project Manager Richard Raynie who provided invaluable assistance in project formulation and development of all versions of this report. Ed Haywood and Syed Khalil (CPRA) provided technical expertise and helped guide the development of this report.

SUGGESTED CITATION

The Water Institute of the Gulf (2019).
Monitoring Plans for Louisiana's System-Wide
Assessment and Monitoring Program (SWAMP),
Version IV. Prepared for and funded by the Coastal
Protection and Restoration Authority (CPRA)
under Task Order 6, Contract No. 2503-12-58.
Baton Rouge, LA. (235p)

PREFACE

The purpose of this report is to describe the development of a coastwide monitoring plan for Louisiana with specific implementation recommendations for Barataria Basin, Pontchartrain Region (Breton Sound, Pontchartrain and Mississippi River Delta basins), and the western basins of Calcasieu-Sabine, Mermentau, Teche-Vermilion, Atchafalaya, and Terrebonne. This cross-disciplinary research was conducted under the Coastal Ecology and Human Dimensions programs with additional support from the Applied Geosciences and the Natural Systems Modeling programs at The Water Institute of the Gulf. The acknowledgments section provides a table with the versions of the report and the external colleagues that contributed. Version I of the report was produced in February 2015 and included only implementation recommendations for Barataria Basin. A presentation was given to state, federal, and non-governmental representatives in April 2015 to communicate the main findings of the report and elicit feedback on the monitoring design and implementation strategy. As a result of the workshop and from comments received during the review of the report by CPRA, Version II of the report was produced to include additional data analysis, improved integration with existing monitoring efforts, and a conceptual diagram of the linkages between the human and natural systems. The design developed for Barataria was then expanded to the basins east of the Mississippi River. The implementation recommendations for the Breton Sound, Pontchartrain, and Mississippi River Delta basins were incorporated into Version III of the report. This Version IV recommends designs of the western basins as well as the other basins covered in the earlier versions.

TABLE OF CONTENTS

PREFACE
ACKNOWLEDGMENTS XII
EXECUTIVE SUMMARY
INTRODUCTION
Context3
Process4
VARIABLES AND OBJECTIVES 6
Natural System7
Human System11
Coupling of The Natural-Human Systems
NATURAL SYSTEM SAMPLING DESIGN
$Building\ On\ Existing\ Monitoring19$
Point and Continuous Sampling
Remote Sensing
Lidar
Subsidence Studies
$Methods \ for \ Determining \ Sample \ Size \underline{\hspace{1cm}} \underline{\hspace{1cm}} 24$
Methods for Determining Sample Size24Power Analysis24
Power Analysis
Power Analysis
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31 Geographic Communities 33
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31 Geographic Communities 33 Occupational Communities 34
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31 Geographic Communities 33 Occupational Communities 34 Physical Risk and Vulnerable Communities 35
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31 Geographic Communities 33 Occupational Communities 34 Physical Risk and Vulnerable Communities 35 Natural Resource Extraction Study Areas 35 Methods of Primary Data Collection 36 Survey Methods 36
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31 Geographic Communities 33 Occupational Communities 34 Physical Risk and Vulnerable Communities 35 Natural Resource Extraction Study Areas 35 Methods of Primary Data Collection 36
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31 Geographic Communities 33 Occupational Communities 34 Physical Risk and Vulnerable Communities 35 Natural Resource Extraction Study Areas 35 Methods of Primary Data Collection 36 Survey Methods 36
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31 Geographic Communities 33 Occupational Communities 34 Physical Risk and Vulnerable Communities 35 Natural Resource Extraction Study Areas 35 Methods of Primary Data Collection 36 Survey Methods 36 Determining Sampling Locations 37
Power Analysis 24 Expert Knowledge 27 Methods for Determining Site Locations 28 Overview 28 Methodology 29 HUMAN SYSTEM SAMPLING DESIGN 31 Methods for Determining Functional Communities 31 Geographic Communities 33 Occupational Communities 34 Physical Risk and Vulnerable Communities 35 Natural Resource Extraction Study Areas 35 Methods of Primary Data Collection 36 Survey Methods 36 Determining Sampling Locations 37 Estimating Sample Size 37

NATURAL SYSTEM MONITORING PLAN	39
Weather and Climate	40
Biotic Integrity	4
Nekton Community Composition and Oyster Biomass	4
Soil Condition and Wetland Vegetation Biomass	54
Wetland Vegetation Community Composition	6
Water Quality	62
Chlorophyll a, Dissolved Oxygen, Nutrients, Salinity, Turbidity, Suspended Sediments	62
Hydrology	70
Water Levels	70
Waves and Currents	7
Physical Terrain	79
Geophysical and Bathymetric Surveys	79
Land Area	
Surface Elevation	80
HUMAN SYSTEMS MONITORING PLAN	9
Geographic Communities	90
Occupational Communities	10
Physical Risk and Vulnerable Communities	
Survey Data Collection	120
PATH FORWARD	128
BIBLIOGRAPHY	132
APPENDIX I INFLUENCE DIAGRAMS	. 14
Overview	14
APPENDIX II ANALYTICAL RESULTS	148
Water Quality	148
Chlorophyll a	149
Dissolved Oxygen	150
Nutrients	172
Salinity	189
Turbidity and Total Suspended Solids	20
Biotic Integrity	21
Nekton Community Composition and Oyster Biomass	
Wetland Biomass and Soil Condition	22
Wetland Community Composition	223
Detecting Change Using ACS Data	230
Determining The Statistical Significance When Comparing Estimates	
Calculating Margins of Error For Derived Proportions	23

LIST OF FIGURES

Figure 1. The geographic scope of the programmatic monitoring plans	
Figure 2. Nesting smaller-scale monitoring plans within larger-scale plans ensures a consistent framework for data collection activities	
Figure 3. Nesting smaller-scale monitoring plans within larger-scale plans ensures a consistent framework for data collection activities	
Figure 5. Existing weather and oceanographic monitoring sites.	
Figure 4. Existing weather and oceanographic monitoring sites.	
Figure 6. Existing biotic integrity sites for sampling nekton, wetland vegetation, and soil.	
Figure 7. Geologic and physiographic setting of regions used in BICM analyses.	
Figure 8. Hypothetical graphs illustrating the concept of threshold points in which a change in the x-axis results in a minimal change in the y-axis	
Figure 9. Hypothetical space illustrating the concept of the GRTS integrated monitoring design	
Figure 10. Master sample generated on the coastwide scale for water-based monitoring efforts.	
Figure 11. U.S. Census Bureau geographical units in coastal Louisiana	
Figure 12. Community boundaries based on 10 minutes' travel time around central places.	
·	
Figure 13. Clusters of natural resource dependent communities.	
Figure 14. Existing and proposed weather and climate sites for the Calcasieu-Sabine Basin.	
Figure 15. Existing and proposed weather and climate sites for the Mermentau Basin.	
Figure 16. Existing and proposed weather and climate sites for the Teche-Vermilion Basin.	
Figure 17. Existing and proposed weather and climate sites for the Atchafalaya Basin.	
Figure 18. Existing and proposed weather and climate sites for the Terrebonne Basin.	
Figure 19. Existing and proposed weather and climate sites for the Barataria Basin	
Figure 20. Existing and proposed weather and climate sites for the Pontchartrain Region	
Figure 21. Existing and proposed sites in Calcasieu-Sabine Basin for monitoring nekton community composition	
Figure 22. Existing and proposed sites in Mermentau Basin for monitoring nekton community composition.	
Figure 23. Existing and proposed sites in Teche-Vermilion Basin for monitoring nekton community composition.	
Figure 24. Existing and proposed sites in Atchafalaya Basin for monitoring nekton community composition.	
Figure 25. Existing sites in Terrebonne Basin for monitoring nekton community composition	51
Figure 26. Existing and proposed 16-foot trawl sites in Barataria Basin for monitoring nekton community composition.	52
Figure 27. Existing sites in Pontchartrain Region for monitoring nekton community composition.	53
Figure 28. New sites in Calcasieu-Sabine Basin for sampling wetland biomass and soil condition.	54
Figure 29. New sites in Mermentau Basin for sampling wetland biomass and soil condition.	55
Figure 30. New sites in Teche-Vermilion Basin for sampling wetland biomass and soil condition.	56
Figure 31. New sites in Atchafalaya Basin for sampling wetland biomass and soil condition.	57
Figure 32. New sites in Terrebonne Basin for sampling wetland biomass and soil condition.	58
Figure 33. New sites in Barataria Basin for sampling wetland biomass and soil condition.	59
Figure 34. CRMS sites in Pontchartrain Region for sampling wetland biomass and soil condition.	60
Figure 35. Existing and proposed water quality monitoring sites for Calcasieu-Sabine Basin	63
Figure 36. Existing and proposed water quality monitoring sites for Mermentau Basin.	64
Figure 37. Existing and proposed water quality monitoring sites for Teche-Vermilion Basin.	65
Figure 38. Existing and proposed water quality monitoring sites for Atchafalaya Basin.	66
Figure 39. Existing and proposed water monitoring sites for Terrebonne Basin.	67
Figure 40. Existing and proposed water quality monitoring sites for Barataria Basin.	68
Figure 41. Existing and proposed water monitoring sites for Pontchartrain Region	69
Figure 42. Existing and proposed Calcasieu-Sabine Basin sites for hydrological monitoring	
Figure 43. Existing and proposed Mermentau Basin sites for hydrological monitoring.	
Figure 44. Existing and proposed Teche-Vermilion Basin sites for hydrological monitoring.	
Figure 45. Existing and proposed Atchafalaya Basin sites for hydrological monitoring.	
Figure 46. Existing and proposed Terrebonne Basin sites for hydrological monitoring	
Figure 47. Existing and proposed Barataria Basin sites for hydrological monitoring.	
Figure 48. Existing and proposed Pontchartrain Region sites for hydrological monitoring.	
0 L L	

Figure 49. Calcasieu-Sabine site locations for measuring surface elevation and bathymetry	79
Figure 50. Mermentau Basin site locations for measuring surface elevation and bathymetry	80
Figure 51. Teche-Vermilion Basin site locations for measuring surface elevation and bathymetry	81
Figure 52. Atchafalaya Basin site locations for measuring surface elevation and bathymetry	82
Figure 53. Terrebonne Basin site locations for measuring surface elevation and bathymetry	
Figure 54. Barataria Basin site locations for measuring surface elevation and bathymetry	
Figure 55. Pontchartrain Region site locations for measuring surface elevation and bathymetry	
Figure 56. Calcasieu-Sabine 5- and 10-minute drive time.	
Figure 57. Mermentau Basin 5- and 10-minute drive time.	
Figure 58. Teche-Vermilion 5- and 10-minute drive time	
Figure 59. Atchafalaya Basin 5- and 10-minute drive time.	
Figure 60. Terrebonne Basin 5- and 10-minute drive time.	
Figure 61. Barataria Basin 5- and 10-minute drive time.	
Figure 62. Pontchartrain Region 5- and 10-minute drive time	
Figure 63. Natural resource-dependent clusters in Calcasieu-Sabine Basin.	
Figure 64. Natural resource-dependent clusters in Mermentau Basin.	
Figure 65. Natural resource-dependent clusters in Teche-Vermilion Basin.	
Figure 66. Natural resource-dependent clusters in Teche-veriminon Basin.	
Figure 67. Natural resource-dependent clusters in Terrebonne Basin	
Figure 68. Natural resource-dependent clusters in Terrebonne Basin.	
Figure 69. Natural resource clusters in the Pontchartrain Region.	
Figure 71. Levee protection in Calcasieu-Sabine Basin.	
Figure 70. Flood risk in Calcaseu-Sabine Basin	
Figure 73. Levee protection in Mermentau Basin.	
Figure 72. Flood risk in Mermentau Basin.	
Figure 75. Levee protection in Teche-Vermilion Basin.	
Figure 74. Flood risk in Teche-Vermilion Basin.	
Figure 77. Levee protection in Atchafalaya Basin	116
Figure 76. Flood risk in Atchafalaya Basin.	
Figure 79. Levee protection in Terrebonne Basin.	
Figure 78. Flood risk in Terrebonne Basin	
Figure 81. Flood protection structures in Barataria Basin	118
Figure 80. Flood risk clusters in Barataria Basin.	
Figure 83. Flood protection structures in the Pontchartrain Region.	119
Figure 82. Flood risk clusters in the Pontchartrain Region.	119
Figure 84. Resource dependent ZIP codes in Calcasieu-Sabine Basin.	120
Figure 85. Resource dependent ZIP codes in Mermentau Basin.	121
Figure 86. Resource dependent ZIP codes in Teche-Vermilion Basin.	122
Figure 87. Resource dependent ZIP codes in Atchafalaya Basin.	123
Figure 88. Resource dependent ZIP codes in Terrebonne Basin	124
Figure 89. Resource dependent block groups in Barataria Basin	125
Figure 90. Resource dependent block groups in the Pontchartrain Region	126
Figure 91. Application of the SWAMP monitoring framework to a report card for coastal Louisiana	
Figure 92. Weather and climate variables (in yellow) selected from the SWAMP Framework influence diagram	
Figure 93. Biotic integrity variables related to wetlands (in yellow) selected from the SWAMP Framework influence diagram.	
Figure 94. Biotic integrity variables related to wetlands (in yellow) selected from the SWAMP Framework influence diagram	
Figure 95. Biotic integrity variables related to pelagic and benthic communities (in yellow) selected from the SWAMP Framework influence diagram	
Figure 96. Water quality variables (in yellow) selected from the SWAMP Framework influence diagram	
Figure 97. Hydrology variables (in yellow) selected from the SWAMP Framework influence diagram	
Figure 99. Teche-Vermilion Basin chlorophyll a power analysis results for hypotheses 1 through 4	
Figure 100. Chlorophyll a site locations for the historical USACE Davis Pond Monitoring Program.	
1 gare 190. Chicophyla a site locations for the instorical Octob Davis 1 vita infolinting 1 logicalli.	1.71

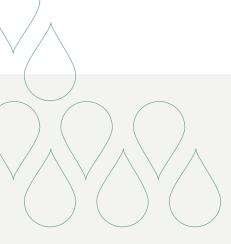
Figure 101.	. Barataria Basin Chlorophyll a power analysis summary results for hypothesis 4 through 6	152
Figure 102	. Barataria Basin subbasin chlorophyll a power analysis summary results for hypotheses 4 through 6	154
Figure 103.	. Pontchartrain Region water quality and chlorophyll a collection sites.	154
Figure 104	. Brenton Basin chlorophyll a power analysis results for hypotheses 4 through 6	155
Figure 105.	. Dissolved oxygen site locations in Calcasieu-Sabine Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network	157
Figure 106	. Calcasieu-Sabine Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4.	158
Figure 107.	Dissolved oxygen site locations in Mermentau Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network	159
Figure 108	. Mermentau Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4	160
Figure 109.	. Dissolved oxygen site locations in Teche-Vermilion Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network	161
Figure 110.	. Teche-Vermilion Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4.	162
Figure 111.	. Dissolved oxygen site locations in Atchafalaya Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network	163
Figure 112	. Atchafalaya Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4.	164
Figure 113.	. Dissolved oxygen site locations in Terrebonne Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network	165
Figure 114.	. Terrebonne Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4	166
Figure 115.	. Dissolved oxygen site locations for the USACE Davis Pond Monitoring Program including those sampled by LDEQ	167
	. Barataria Basin dissolved oxygen power analysis summary results for hypotheses 4 through 6.	
	Barataria Basin dissolved oxygen power analysis summary results for hypotheses 4 through 6.	
Figure 118.	Pontchartrain Region dissolved oxygen power analysis summary results for hypotheses 4 through 6	171
	Calcasieu-Sabine Basin total nitrogen power analysis results for hypotheses 2 through 4	
	Calcasieu-Sabine Basin total phosphorous power analysis results for hypotheses 2 through 4.	
	. Mermentau Basin total nitrogen power analysis results for hypotheses 2 through 4.	
	. Mermentau Basin total phosphorous power analysis results for hypotheses 2 through 4.	
_	Teche-Vermilion Basin total nitrogen power analysis results for hypotheses 1 through 4	
	Teche-Vermilion Basin total phosphorous power analysis results for hypotheses 2 through 4	
	Atchafalaya Basin total nitrogen power analysis results for hypotheses 2 through 4	
	Atchafalaya Basin total phosphorous power analysis results for hypotheses 2 through 4	
	Terrebonne Basin total nitrogen power analysis results for hypotheses 2 through 4	
	. Terrebonne Basin total phosphorous power analysis results for hypotheses 2 through 4	
	Barataria Basin total nitrogen power analysis results for hypotheses 4 through 6.	
	Barataria Basin total phosphorous power analysis results for hypotheses 4 through 6.	
	Barataria subbasin total nitrogen power analysis results for hypotheses 4 through 6.	
	Barataria subbasin total phosphorous power analysis results for hypotheses 4 through 6.	
_	Pontchartrain Region TKN and TN power analysis results for hypotheses 2 through 4.	
	Pontchartrain Region TP power analysis results for hypotheses 2 through 4	
	CRMS and USGS continuous salinity gauge site locations in Calcasieu-Sabine Basin.	
	. Calcasieu-Sabine Basin salinity power analysis results in open water bodies for hypotheses 2 through 4	
	CRMS and USGS continuous salinity gauge site locations in Mermentau Basin.	
-	. Mermentau Basin salinity power analysis results in open water bodies for hypotheses 2 through 4.	
0	CRMS and USGS continuous salinity gauge site locations in Teche-Vermilion Basin.	
	. Teche-Vermilion Basin salinity power analysis results in open water bodies for hypotheses 2 through 4.	
	CRMS and USGS continuous salinity gauge site locations in Atchafalaya Basin.	
	Atchafalaya Basin salinity power analysis results in open water bodies for hypotheses 2 through 4	
-	CRMS and USGS continuous salinity gauge site locations in Terrebonne Basin	
0	. Terrebonne Basin salinity power analysis results in open water bodies for hypotheses 2 through 4.	
	. Terrebonne dasin sailinity power analysis results in open water bodies for hypotheses 2 through 4. . CRMS and USGS continuous salinity gauge site locations in Barataria Basin	
_	Barataria Basin salinity power analysis results in open water bodies for hypotheses 3 through 5.	
	Barataria subbasin salinity power analysis results in open water bodies for hypotheses 3 through 5.	
	. CRMS and USGS continuous salinity gauge site locations in the Pontchartrain Region	
	Pontchartrain Region salinity power analysis results for hypotheses 2 through 4.	
-	Calcasieu-Sabine TSS power analysis results for hypotheses 2 through 4.	
	. Mermentau TSS power analysis results for hypotheses 2 through 4.	
1-18016 121.	. Profitencial 1 00 power analysis results for hypotheses 2 through 4.	40/

Figure 152. Teche-Vermilion TSS power analysis results for hypotheses 2 through 4.	208
Figure 153. Atchafalaya TSS power analysis results for hypotheses 2 through 4.	209
Figure 154. Terrebonne TSS power analysis results for hypotheses 2 through 4.	210
Figure 155. Barataria Basin TSS power analysis results for hypotheses 4 through 6.	212
Figure 156. Barataria subbasin TSS power analysis results for hypotheses 4 through 6.	213
Figure 157. Pontchartrain Region TSS power analysis results for hypotheses 4 through 6.	215
Figure 158. Existing LDWF nekton sampling sites in the Barataria subbasins.	217
Figure 159. Barataria Basin power analysis results for the 750-foot gill net.	218
Figure 161. Barataria Basin power analysis results for electrofishing.	
Figure 160. Barataria Basin power analysis results for the 16-foot trawl.	
Figure 162. Barataria Basin power analysis results for the 50-foot seine.	
Figure 163. Existing LDWF nekton sampling sites in the Pontchartrain Region.	
Figure 164. Pontchartrain Region power analysis results for the 750-foot gill net.	220
Figure 166. Pontchartrain Region power analysis results for electrofishing.	220
Figure 165. Pontchartrain Region power analysis results for the 16-foot trawl.	220
Figure 167. Pontchartrain Region power analysis results for the 50-foot seine.	220
Figure 168. Coastwide aboveground biomass power analysis results.	221
Figure 169. Barataria Basin aboveground biomass power analysis results.	222
Figure 170. Forested wetland FFQI coastwide power analysis results.	223
Figure 171. Coastwide aboveground biomass power analysis results.	224
Figure 172. Existing CRMS sites in Barataria Basin used in the power analysis.	225
Figure 173. Barataria Basin forested wetland FFQI power analysis results.	226
Figure 174. Barataria Basin herbaceous wetland power analysis results	227
Figure 175. Existing CRMS sites in Pontchartrain Region used in the power analysis	228
Figure 176. Pontchartrain Region FFQI power analysis results.	229
Figure 177. Pontchartrain Region FQI power analysis results.	229

LIST OF TABLES

Table 1. Monitoring variables and objectives for weather and climate.	7
Table 2. Monitoring variables and objectives for biotic integrity	8
Table 3. Monitoring variables and objectives for water quality	9
Table 4. Monitoring variables and objectives for hydrology	10
Table 5. Monitoring variables and objectives for physical terrain.	11
Table 6. Monitoring variables and objectives for population and demographics.	12
Table 7. Monitoring variables and objectives for housing and community characteristics.	13
Table 8. Monitoring variables and objectives for economy and employment.	14
Table 9. Monitoring variables and objectives for ecosystem dependency.	15
Table 10. Monitoring variables and objectives for protection of residential properties.	16
Table 11. Monitoring variables and objectives for the protection of critical infrastructure and essential services.	17
Table 12. Satellite sensors for monitoring land features	22
Table 13. Common sources of variability in natural resources surveys with potential remedies (adapted from Reynolds, 2012)	25
Table 14. Summary of variables for which a power analysis was conducted in the eastern basins (Barataria Basin and Pontchartrain Region)	26
Table 15. Recommended sample sizes for the Calcasieu-Sabine Basin natural system monitoring plan within the coastal boundary (see Figure 34)	88
Table 16. Recommended sample sizes for the Mermentau Basin natural system monitoring plan within the coastal boundary (see Figure 35)	89
Table 17. Recommended sample sizes for the Teche-Vermilion Basin natural system monitoring plan within the coastal boundary (see Figure 36)	90
Table 18. Recommended sample sizes for the Atchafalaya Basin natural system monitoring plan within the coastal boundary (see Figure 37)	91
Table 19. Recommended sample sizes for the Terrebonne Basin natural system monitoring plan within the coastal boundary (see Figure 38)	92
Table 20. Recommended sample sizes for the Barataria Basin natural system monitoring plan.	93
Table 21. Recommended sample sizes for the Pontchartrain Region natural system monitoring plan.	94
Table 22. Recommended data sources and sampling design for the human system monitoring plan.	104
Table 23. Teche-Vermilion Chlorophyll a power analysis summary results for hypotheses 1 through 4.	150
Table 24. Barataria Basin Chlorophyll a power analysis summary results for hypotheses 1 through 6	152
Table 25. Barataria Basin subbasin Chlorophyll a summary power analysis results for hypotheses 2 through 6	153
Table 26. Breton Basin chlorophyll a power analysis results for hypotheses 1 through 6.	155
Table 27. Coastwide dissolved oxygen power analysis summary results for hypotheses 1 through 6.	156
Table 28. Calcasieu-Sabine Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4	158
Table 29. Mermentau Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4.	160
Table 30. Teche-Vermilion Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4.	162
Table 31. Atchafalaya Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4	164
Table 32. Terrebonne Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4.	166
Table 33. Barataria Basin dissolved oxygen power analysis summary results for hypotheses 1 through 6.	168
Table 34. Barataria subbasin dissolved oxygen power analysis summary results for hypotheses 2 through 6	169
Table 35. Pontchartrain Region dissolved oxygen power analysis summary results for hypotheses 1 through 4	171
Table 36. Coastwide total nitrogen power analysis summary results for hypotheses 1 through 5	172
Table 37. Coastwide total phosphorus power analysis summary results for hypotheses 1 through 5.	172
Table 38. Calcasieu-Sabine Basin total nitrogen power analysis summary results for hypotheses 1 through 4.	173
Table 39. Calcasieu-Sabine Basin total phosphorous power analysis summary results for hypotheses 1 through 4.	173
Table 40. Mermentau Basin total nitrogen power analysis summary results for hypotheses 1 through 4	175
Table 41. Mermentau Basin total phosphorus power analysis summary results for hypotheses 1 through 4.	175
Table 42. Teche-Vermilion Basin total nitrogen power analysis summary results for hypotheses 1 through 4.	177
Table 43. Teche-Vermilion Basin total phosphorus power analysis summary results for hypotheses 1 through 4.	177
Table 44. Atchafalaya Basin total nitrogen power analysis summary results for hypotheses 1 through 4.	179
Table 45. Atchafalaya Basin total phosphorus power analysis summary results for hypotheses 1 through 4	179
Table 46. Terrebonne Basin total nitrogen power analysis summary results for hypotheses 1 through 4.	181
Table 47. Terrebonne Basin total phosphorus power analysis summary results for hypotheses 1 through 4	181
Table 48. Barataria Basin total nitrogen power analysis summary results for hypotheses 1 through 6	183

Table 49. Barataria Basin total phosphorus power analysis summary results for hypotheses 1 through 6.	184
Table 50. Barataria subbasin total nitrogen power analysis summary results for hypotheses 2 through 6.	185
Table 51. Barataria subbasin total phosphorus power analysis summary results for hypotheses 2 through 6	186
Table 52. TKN (upper and lower Pontchartrain) and TN (Breton) summary results of the power analysis for hypotheses 1 through 4	187
Table 53. Pontchartrain Region TP power analysis summary results for hypotheses 1 through 4	188
Table 54. Coastwide salinity power analysis summary results for hypotheses 1 through 5	189
Table 55. Calcasieu-Sabine Basin salinity power analysis summary results for hypotheses 1 through 4.	191
Table 56. Mermentau Basin salinity power analysis summary results for hypotheses 1 through 4.	193
Table 57. Teche-Vermilion Basin salinity power analysis summary results for hypotheses 1 through 4	195
Table 58. Atchafalaya Basin salinity power analysis summary results for hypotheses 1 through 4	197
Table 59. Terrebonne Basin salinity power analysis summary results for hypotheses 1 through 4	199
Table 60. Barataria Basin salinity power analysis summary results for hypotheses 1 through 5.	201
Table 61. Barataria subbasin salinity power analysis summary results for hypotheses 2 through 5	202
Table 62. Pontchartrain Region salinity power analysis summary results for hypotheses 1 through 4	204
Table 63. Coastwide total suspended solids power analysis summary results for hypotheses 1 through 5.	205
Table 64. Calcasieu-Sabine total suspended solids power analysis summary results for hypotheses 1 through 4	206
Table 65. Mermentau Basin total suspended solids power analysis summary results for hypotheses 1 through 4	207
Table 66. Teche-Vermilion Basin total suspended solids power analysis summary results for hypotheses 1 through 4	208
Table 67. Atchafalaya Basin total suspended solids power analysis summary results for hypotheses 1 through 4	209
Table 68. Terrebonne Basin total suspended solids power analysis summary results for hypotheses 1 through 4	210
Table 69. Barataria Basin total suspended solids power analysis summary results for hypotheses 1 through 6	212
Table 70. Barataria subbasin total suspended solids power analysis summary results for hypotheses 2 through 6.	213
Table 71. Pontchartrain Region total suspended solids power analysis summary results for hypotheses 1 through 4.	214
Table 72. Standard deviations for nekton by gear type used in coastwide power analysis.	216
Table 73. Standard deviations for nekton by gear type used in Barataria Basin power analysis.	217
Table 74. Standard deviations for nekton by gear type used in Pontchartrain Region power analysis	219
Table 75. Barataria Basin total suspended solids power analysis summary results for hypotheses 1 through 6	221
Table 76. Barataria Basin herbaceous wetland aboveground biomass summary results of the power analysis for hypotheses 1 through 4	222
Table 77. Forested wetland FFQI summary results of the power analysis for the hypotheses on the coastwide scale.	223
Table 78. Coastwide herbaceous wetland summary results of the power analysis for hypotheses 1 through 5	224
Table 79. Barataria Basin forested wetland FFQI power analysis summary results	226
Table 80. Barataria Basin herbaceous wetland power analysis summary results.	227
Table 81. Barataria Basin (2006-2010) vacant housing units¹ in renewable natural resource-dependent block groups	230
Table 82. Barataria Basin (2008-2012) vacant housing units in renewable natural resource-dependent block groups	231
Table 83. Barataria Basin (2008-2012) households in poverty in natural resource-dependent block groups.	234
Table 84. Barataria Basin (2008-2012) percentage household poverty in select census block groups	235


LIST OF ACRONYMS

ACRONYM	TERM	
ACS	American Community Survey	
ADCIRC	Advanced Circulation	
AM	Adaptive Management	
ASOS	Automated Surface Observing System	
AVHRR	Advanced Very High Resolution Radiometer	
AWOS	Automated Weather Observing System	
AWQ	Ambient Water Quality	
BICM	Barrier Island Comprehensive Monitoring	
CDL	Cropland Data Layer	
CDP	Census Designated Places	
CORS	Continuously Operating Reference Stations	
CPRA	Coastal Protection and Restoration Authority	
CPUE	Catch Per Unit Effort	
CRMS	Coastwide Reference Monitoring System	
CV	Coefficient of Variation	
CWPPRA	Coastal Wetlands Planning, Protection, and Restoration Act	
DBH	Diameter at Breast Height	
DO	Dissolved Oxygen	
EMAP	Environmental Monitoring and Assessment Program	
ET	Evapotranspiration	
EwE	Ecopath with Ecosim	
FEMA	Federal Emergency Management Agency	
FFQI	Forested Floristic Quality Index	
FIRM	Flood Insurance Rate Map	
FQI	Floristic Quality Index	
GIS	Geographic Information System	
GLM	General Linear Model	
GRTS	Generalized Random Tessellation Stratified	
ICM	Integrated Compartment Models	
IEA	Integrated Ecosystem Assessments	
IRS	Independent Random Sampling	
ISH	Integrated Surface Hourly	
LCA	Louisiana Coastal Area	
LDEQ	Louisiana Department of Environmental Quality	
LDWF	Louisiana Department of Wildlife and Fisheries	
LIDAR	Light Detecting and Ranging	

ACRONYM	ONYM TERM	
LSU	Louisiana State University	
LUMCON	Louisiana Universities Marine Consortium	
MH	Multi-Hazard	
MODIS	Moderate Resolution Imaging Spectroradiometer	
MOE	Margins of Error	
MRHDMS	Mississippi River Hydrodynamic and Delta Management Study	
NASS	National Agricultural Statistics Service	
NAVD88	North American Vertical Datum of 1988	
NCDC	National Climatic Data Center	
NDBC	National Data Buoy Center	
NHD	National Hydrology Dataset	
NOAA	National Oceanic and Atmospheric Administration	
NPS	National Park Service	
NTU	Nephelometric Turbidity Units	
PET	Potential Evapotranspiration	
QA/QC	Quality Assurance/Quality Control	
SAS	Statistical Analysis Software	
SE	Standard Error	
SFHA	Special Flood Hazard Areas	
SPOT	Satellite Pour l'Observation de la Terre	
SWAMP	System-Wide Assessment and Monitoring Program	
TM	Thematic Mapper	
TN	Total Nitrogen	
TNC	The Nature Conservancy	
TP	Total Phosphorus	
TSS	Total Suspended Solids	
ULL	University of Louisiana at Lafayette	
USACE	U.S. Army Corps of Engineers	
USEPA	U.S. Environmental Protection Agency	
USGS	U.S. Geological Survey	
VIIRS	Visible Infrared Imagine Radiometer Suite	
WAVCIS	Wave-Current-Surge Information System	
ZCTA	Zip Code Tabulation Area	

GLOSSARY OF STATISTICAL TERMS

STATISTICAL TERM	SYMBOL	DEFINITION	
Effect Size	none	inimum detectable difference between two means, measured as the percentage change from the initial or urrent mean value.	
Power	1-β	pability of detecting a significant difference when a difference actually exists.	
Standard Deviation	σ	Square root of variance.	
Type I Error Rate	α	Probability of incorrectly rejecting the null hypothesis when then null hypothesis is true.	
Type II Error Rate	β	Probability of failing to reject the null hypothesis when then null hypothesis is false.	
Variance	σ^2	Extent to which the data deviate from the mean.	

The Coastal Protection and Restoration Authority (CPRA) staff and former staff contributed to the concepts presented in this report and participated in project meetings. They included Rick Raynie (SWAMP project manager), Karim Belhadjali, Bill Boshart, Rickey Brouillette, Honora Buras, Angelina Freeman, Mandy Green, Bren Haase, Ed Haywood, Syed Khalil, John Monzon, Jennifer Mouton, Jim Pahl, Carol Parsons Richards, Melanie Saucier, Leigh Anne Sharp, John Troutman, Chuck Villarrubia, and Dona Weifenbach.

Subject matter experts were also convened to assist with refinement of the monitoring variables and objectives and review preliminary results and sampling designs. They included Mark Hester of the University of Louisiana at Lafayette; Bryan Piazza of The Nature Conservancy; and Erick Swenson, Troy Blanchard, and Rex Caffey of Louisiana State University. Mary C. Christman of MCC Statistical Consulting provided statistical guidance and oversight and generated SAS code that was adapted for the analyses presented herein. Sarai Piazza of the U.S. Geological Survey, Al Hindrichs and Melinda Molieri of the Louisiana Department of Environmental Quality, and staff from Louisiana Department of Wildlife and Fisheries, Beth Stauffer and Andrea Jaegge from University of Louisiana at Lafayette and in collaboration with the Louisiana Department of Wildlife and Fisheries, and the U.S. Army Corps of Engineers Mississippi Valley Division New Orleans District provided data used in the analyses. Appreciation goes to Donald Sagrera from Teche-Vermilion Fresh Water District for discussing and providing information about the water quality program in the basin.

Version I of this report was presented to an extensive group of individuals from state, federal, and non-governmental agencies and we thank those who provided written feedback that led to the refinements incorporated in Version II, including Stephen Barnes and Eric Swenson of Louisiana State University, John Foret of the National Marine Fisheries Service National Oceanic and Atmospheric Administration, and Chris Swarzenski of the U.S. Geological Survey. Several individuals also assisted in identifying opportunities to leverage existing monitoring programs and resources including John Barras, Jim Flocks, and Greg Steyer of the U.S. Geological Survey; Dwight Bradshaw of the Louisiana Department of Environmental Quality; Maria Dillard and Tim Osborn of National Oceanic and Atmospheric Administration; Jeffrey Giering of the Governor's Office of Homeland Security and Emergency Preparedness; Lauren Land of Louisiana Sea Grant; Brian Lezina of the Louisiana Department of Wildlife and Fisheries; Shannon McArthur of the National Data Buoy Center; and Mathew Sanders of the Louisiana Office of Community Development.

In Version IV, appreciation goes to the expert knowledge of Eric White at CPRA, Mike Miner, and Dallon Weathers at The Water Institute of the Gulf (the Institute) that provided information about site locations to monitor the weather and climate as well as hydrology. A webinar was held to discuss the draft monitoring design of the western basins and feedback was provided by many participants, which helped clarify and improve the western basin design. Acknowledgement goes to U.S. Geological Survey scientists of Sarai Piazza, Camille Stagg, Brady Couvillion, and Greg Steyer for reviewing draft biotic integrity text about monitoring the wetlands and for reviewing the draft report. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

The development of the ideas presented here was guided by a larger team of current and former employees of the Institute including Mead Allison, Tim Carruthers, Katelyn Costanza, Ehab Meselhe, Leland Moss, Joao Pereira, Denise Reed, Dallon Weathers, and Brendan Yuill. Version IV of this report received assistance from Alaina Grace, Alyssa Dausman, Huy Vu, and Adrian McInnis.

Versions of this report were reviewed by Cyndhia Ramatchandirane and CPRA.

/ERSION

PURPOSE

- Develop the SWAMP Framework to identify the overarching goals of the monitoring program
- Review existing monitoring programs within coastal Louisiana and develop a monitoring geodatabase
- Identify monitoring variables and specific objectives and develop the SWAMP sampling design
- Develop a programmatic monitoring plan for evaluating the effectiveness of the coastal protection and restoration program on a coastwide scale
- Develop a basinwide monitoring plan for the Barataria Basin

CONTRIBUTORS

Ann Hijuelos Scott Hemmerling Rick Raynie

DATE

2015

ERSION I

PURPOSE

- Present findings to state, federal, and non-governmental representatives to elicit feedback on the monitoring design and implementation strategy.
- Conduct additional data analysis, improve integration with existing monitoring efforts, and clarify the linkages between the human and natural systems.

CONTRIBUTORS

Ann Hijuelos Scott Hemmerling Rick Raynie

DATE

2015

ERSION II

PURPOSE

 Expand the design developed for Barataria Basin to the Breton Sound, Pontchartrain, and Mississippi River Delta basins

CONTRIBUTORS

Ann Hijuelos Scott Hemmerling Rick Raynie

DATE

2016

RSION IV

PURPOSE

- Review ongoing SWAMP implementation efforts for the eastern basins to improve the SWAMP monitoring design and implementation strategy
- Expand the SWAMP monitoring design to the Calcasieu-Sabine, Mermentau, Teche-Vermilion, Atchafalaya, and Terrebonne basins

CONTRIBUTORS

Scott Hemmerling Melissa Baustian Lauren Grimley Harris Bienn Michael Vingiello Rick Raynie Syed Khalil Ed Haywood Shaye Sable Ann Hijuelos

DATE

2019

EXECUTIVE SUMMARY

The System-Wide Assessment and Monitoring Program (SWAMP) has been envisioned as a long-term monitoring program to ensure a comprehensive network of coastal data collection activities is in place to support the development, implementation, and adaptive management of the coastal protection and restoration program within coastal Louisiana. The Coastwide Reference Monitoring System (CRMS) and Barrier Island Comprehensive Monitoring (BICM) programs have been implemented under SWAMP, while other aspects of system dynamics, including offshore and inland water-body boundary conditions, nontidal freshwater habitats, riverine conditions, risk status, and protection performance, are not presently the subject of CPRA-coordinated (Coastal Protection and Restoration Authority) monitoring. In order to implement these additional aspects of SWAMP, CPRA partnered with The Water Institute of the Gulf and others to develop 1) a programmatic monitoring plan for evaluating the effectiveness of the coastal protection and restoration program on a coastwide scale, and 2) basinwide monitoring plans that will incorporate the elements of the programmatic plan with specific data collection activities designed to capture effects within the basin. Monitoring plans were developed for Barataria Basin, Pontchartrain Region (includes Breton Sound, Pontchartrain and Mississippi River Delta Basins), and the western basins (Calcasieu-Sabine, Mermentau, Teche-Vermilion, Atchafalaya, and Terrebonne) for both the natural and human systems using a process to identify the monitoring variables, objectives, and sampling design. The monitoring variables and objectives identified fall under the general categories of weather and climate, biotic integrity, water quality, hydrology, physical terrain, population and demographics, housing and community characteristics, economy and employment, ecosystem dependency, residential properties protection, and critical infrastructure and essential services protection. A rigorous statistical analysis, examination of modeling needs, and thorough reviews of previous planning and monitoring efforts were conducted to develop the sampling designs for the natural and human system monitoring plans. The plan relies heavily on the use of existing data, thus, coordination with other agencies (e.g., LDEQ, LDWF) and CPRA's existing monitoring programs (e.g., BICM, CRMS) is critical to the plan's success. Implementation of the plans will require development of quality control and quality assurance protocols, specific standardized operating procedures for each of the data collection efforts, a data management plan, and a reporting framework to contribute to decision making and reducing uncertainty in management actions.

INTRODUCTION

CONTEXT

The State of Louisiana and its partners have allocated considerable resources and have made long-term commitments to the restoration and management of wetland and aquatic resources in the coastal zone. Early project-specific monitoring efforts through the Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA) program in the early 1990s quickly became challenging as adequate reference areas were difficult to identify and monitoring variables were not consistent among projects. As a result, CWPPRA developed the Coastwide Reference Monitoring System (CRMS) to address these challenges and provide a pool of reference sites by which to evaluate the effectiveness of individual restoration projects, effectiveness of the overall program, and to provide a means to assess landscape change (Steyer et al., 2003a).

Although CRMS provides valuable data on wetlands across coastal Louisiana, a more comprehensive, systematic monitoring program is needed to meet the needs of the state's coastal protection and restoration program, including predictive modeling and program assessment. In 2005, the Louisiana Coastal Area (LCA) Ecosystem Restoration Study Science and Technology Program proposed expanding CRMS to include coastal waters and barrier islands (U.S. Army Corps of Engineers, 2004). Although a formalized coastal waters program was not implemented, the monitoring of barrier islands was initiated by the Louisiana Department of Natural Resources (LDNR) under the Barrier Island Comprehensive Monitoring Program (BICM) and is now managed by the Coastal Protection and Restoration Authority (CPRA). While the ongoing monitoring and assessment of wetland systems and barrier islands through CRMS and BICM, respectively, has proven to be of value, other aspects of system dynamics, including offshore and inland water-body boundary conditions, nontidal freshwater habitats, riverine conditions, risk status, and protection performance, are not presently the subject of CPRA-coordinated monitoring. In addition, monitoring of some key aspects of the Louisiana coastal system is undertaken by other agencies or entities. To meet this need, the System-Wide Assessment and Monitoring Program (SWAMP) was envisioned as a long-term monitoring program to ensure a comprehensive network of coastal data collection activities is in place to support the development, implementation, and adaptive management of the coastal protection and restoration program within coastal Louisiana.

CPRA and The Water Institute of the Gulf (the Institute) have embarked on a series of tasks to advance the re-envisioned SWAMP to implementation. First, CPRA and the Institute developed the SWAMP Framework to identify the overarching goals of the monitoring program and to illustrate how the main drivers of system change influence specific system characteristics (e.g., salinity, population levels, etc.), using an influence diagram

approach (Hijuelos et al., 2013). The influence diagram assisted in identifying the important variables needed to support the restoration and protection program and to understand the overall system condition. Second, a review of existing monitoring programs within coastal Louisiana was conducted to develop a monitoring geodatabase that catalogues site locations, variables collected at each site, frequency of data collection, and period of record. The Framework and monitoring inventory are used to prioritize monitoring needs, identify data gaps, and guide the development of the SWAMP monitoring plan presented in this report.

Building from these earlier efforts, CPRA partnered with the Institute and others to progress SWAMP by developing: 1) a programmatic monitoring plan for evaluating the effectiveness of the coastal protection and restoration program on a coastwide scale, and 2) basinwide monitoring plans for the Barataria Basin and Pontchartrain Region (Pontchartrain, Breton Sound, and Mississippi River Delta basins) that incorporate the elements of the programmatic plan with specific data collection activities designed to capture effects within the basins. Both Barataria Basin and the Pontchartrain Region have experienced severe land loss in recent decades (Couvillion et al., 2017) and have been the site of many restoration initiatives under CWPPRA. Louisiana's Comprehensive Master Plan for a Sustainable Coast includes a variety of projects, including barrier shoreline projects along the Gulf shoreline and several sediment diversion projects (CPRA, 2012). These projects, along with existing projects such as the Davis Pond and Caernarvon Diversions, are expected to change many aspects of the system dynamics. The basins also include several coastal communities, such as Lafitte, which are heavily dependent on natural resources and currently have no levee protection from storm surge. As such, these basins are appropriate locations to begin the design of SWAMP and demonstrate the application of a system-wide approach to monitoring at the basin scale.

The ultimate goal of the monitoring plans is to obtain repeated long-term (e.g., years to decades) measurements that can be utilized as baseline data and be analyzed to detect change that may result from a variety of sources, including large-scale restoration and protection projects, environmental disturbances, changing climate, and other major drivers that impact the system. Attributing causes of change will require additional

data collection beyond the intent or scope of SWAMP that is tailored for specific research questions of interest; however, the coastwide and basinwide monitoring programs will provide a baseline of information to serve as a foundation for cause and effect studies. CPRA established the geographic scope of the programmatic coastwide and basinwide plans with the Gulf boundary demarcated by the coastal zone and inland boundary by the 10-meter contour line (Figure 1).

PROCESS

The development of large-scale environmental monitoring plans has been extensively discussed in the literature as it pertains to detecting change in ecological systems (Field et al., 2007; Gitzen et al., 2012; Wagner et al., 2013), development of indicators (Fennessy et al., 2007; Hershner et al., 2007; Nicholson & Jennings, 2004), and in the larger context of adaptive management (Williams et al., 2009). Although few large ecosystem-level socioeconomic monitoring plans have been implemented to date (Charnley & Stuart, 2006; Jackson et al., 2004; Sommers, 2001), the monitoring of social indicators has long been a crucial component of social impact assessments required for those projects that have environmental impacts on human communities (Interorganizational Committee on Principles and Guidelines for Social Impact Assessment, 2003; Kusel, 1996; Machlis et al., 1997). There is broad consensus that the key to a successful monitoring program is the development of (1) specific and relevant goals and objectives, and (2) survey designs that allow for drawing statistical inferences about the variable or resource of interest (Fancy et al., 2009; Legg & Nagy, 2006; Wagner et al., 2013). Also of importance are the creation of conceptual models to identify cause-effect relationships and describe the interactions among variables, as well as peerreviewed protocols that describe the collection, management, analysis, and reporting procedures for the data (Fancy & Bennetts, 2012).

A long-term monitoring program can support adaptive coastal management by: (1) producing information on the status and trends of critically important natural and socio-economic resources, (2) providing data that support the development and validation of models, (3) enabling assessments of how systems

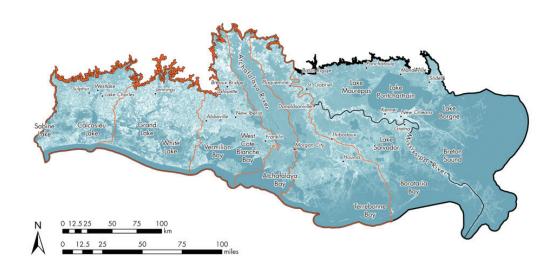


Figure 1. The geographic scope of the programmatic monitoring plans.

Coastwide boundary is outlined in black and basinwide boundaries are outlined in orange.

are changing, and (4) allowing determination of whether goals or targets are being achieved for both sustainable landscapes and resilient communities. In order to be successful, the quality, scale, and resolution of the data must be appropriate to meet the monitoring program's specific objectives. This includes error, accuracy, and bias, which requires a statistical approach to ensure they are examined during the planning and design of monitoring programs. A monitoring plan that fails to consider data quality or analytical needs may not support meaningful analysis and interpretation of data in the future. As a result, thorough planning of the objectives, analysis, design, and measurement choices must be conducted prior to the actual network deployment.

The process presented here provides the framework for implementing a comprehensive monitoring plan for both natural and human systems. The plan was designed to enable "nesting" of a basinwide monitoring plan within the programmatic coastwide plan to ensure consistencies in designs such that basin-scale monitoring data can be used to assess program performance. Likewise, development of project-specific monitoring, although beyond the scope of SWAMP, could be designed to nest within the basinwide monitoring plan, allowing consistency in designs and data collection methodologies across all scales where possible (Figure 2) and avoiding duplication of efforts. The plan uses a process to identify the monitoring variables, objectives, and sampling design for both the natural and human systems of coastal Louisiana that can then be applied to the basin scale. Variables are elements of the natural and human systems that can be measured or calculated from measurements. The sampling design refers to the approach used to develop the proposed sample size and methodology for selecting site locations. In developing the initial plan, we assumed the objectives were identical for the programmatic coastwide and basinwide monitoring plans. As programmatic assessment and evaluation methodologies are developed, these objectives may need to be revisited.

Figure 2. Nesting smaller-scale monitoring plans within larger-scale plans ensures a consistent framework for data collection activities.

The process for developing the programmatic coastwide and basinwide plans for the natural system is summarized as follows:

- · identify monitoring variables and specific objectives, and
- develop sampling design:
 - determine required sample spatial and temporal density using analytical approaches and expert knowledge of system dynamics, and specify desired levels of precision and confidence for meeting the objectives;
 - establish methodology for selecting site locations; and
 - identify site locations for the basinwide plan.

The process for developing the programmatic coastwide and basinwide plans for the human system is summarized as follows:

- · identify monitoring variables and specific objectives, and
- develop sampling design:
 - establish appropriate units of analysis and define functional socioeconomic communities;
 - determine methods using secondary data sources to monitor changes and trends in population and income distribution, employment by sector, education, housing type, and other social factors at the community level; and
 - identify primary data collection needs and establish methods to determine the required sample size for community surveys.

The approaches to developing the sampling design for the natural and human systems vary given the underlying differences among the data types, although they share many common themes. The natural system approach uses existing data from ongoing (or historical) monitoring programs to evaluate how these programs can be supplemented with additional data collection activities in order to improve confidence and levels of precision in the data. Conversely, the human system approach evaluates how the existing data can be analyzed to meet the monitoring variables and objectives, given that these secondary data sources, such as the American Community Survey (ACS), are fixed designs implemented by other agencies that cannot be directly augmented. Primary data collection needs and methods are then identified for those variables and objectives that cannot be met by the secondary data.

The report is structured as follows: The variables and objectives are first presented for both the natural and human systems to set the stage for the remaining discussions. The sampling designs are then described on the coastwide scale, separately for the natural and human systems, given the differences in data types, as previously described. The variables and sampling designs are then applied to the basins to generate basinwide monitoring plans. The path forward section discusses additional steps necessary for implementing the plan. Appendix I contains influence diagrams for each of the variables. For the natural system, detailed analytical results from the power analysis are provided in Appendix II. For the Human System, an example of how to use existing data to detect change is provided in Appendix II.

VARIABLES AND OBJECTIVES

Clearly articulated goals and objectives provide the rationale for monitoring and inform the specification of what, where, when, and how to collect data (Gitzen & Millspaugh, 2012). As defined in the Framework, the goals of the monitoring program are to support CPRA activities by providing data on the natural and human environment that can be used to:

- document the drivers (natural and anthropogenic) and their effects on the system;
- provide early warning indications of changes in the system state;
- monitor the effects of natural or anthropogenic disturbances;
- reduce uncertainties regarding changing conditions or system state;
- evaluate the performance of coastal protection and restoration programs and support decision making;
- improve, validate, and calibrate numerical models; and
- support planning, engineering, and designing activities.

Building on the goals and variables identified in the SWAMP Framework as well as other efforts related to performance measures and long-term monitoring in coastal Louisiana (Hijuelos & Reed, 2013a; Steyer et al., 2004; Swenson & Swarzenski, 2004), a subset of monitoring variables was identified and these variables were prioritized, in coordination with CPRA, based on relevance to the coastal restoration and protection program. The SWAMP monitoring variables were designed to monitor changes in the state's water bodies and in those communities that rely on these waters for their wellbeing and livelihoods. While the SWAMP framework provides the flexibility to conduct project-specific monitoring, the suite of prioritized variables selected were broad enough to monitor changes across coastal Louisiana.

The influence diagrams developed in the SWAMP Framework are provided in Appendix I for the selected variables to illustrate general relationships between drivers and system responses. The variables were then grouped into eleven categories that represent various aspects of the system relevant to the wideranging activities of the coastal restoration and protection program. These categories are described in detail in the following sections. For each of the categories, a fundamental objective was developed in order to provide a broad rationale for monitoring the specific aspects of the system. Monitoring objectives were then established for each of the variables in order to articulate their need and purpose. This hierarchical approach of developing goals and objectives results in a focused description of why and what should be monitored. This information was then refined in coordination with subject matter experts experienced with collecting data in coastal Louisiana, including Mark Hester (University of Louisiana at Lafayette, ULL), Erick Swenson (Louisiana State University, LSU), Bryan Piazza (The Nature

Conservancy, TNC), Darin Lee (CPRA), Troy Blanchard (LSU), and Rex Caffey (LSU). The combined expertise of these individuals includes water quality, vegetation, barrier islands, fisheries, demography, and natural resource economics. As part of the process, additional refinements of the objectives and consolidation of variables occurred through the development of the plan.

NATURAL SYSTEM

The term "natural system" is used to describe the variables related to the coastal environment, excluding the human dimension. Natural resources critical for sustaining human ecosystems, such as agricultural yields and fishery landings, are specifically identified in the Human System section below. The variables identified include the main drivers of system change and those that reflect a number of system change mechanisms, primarily focusing on landscape or higher trophic dynamics. Collectively, the variables provide an understanding in a holistic sense of the potential impacts on system dynamics from a variety of drivers and are intended to be indicative of system condition or status rather than to be exhaustive. The monitoring variables and objectives related to natural systems monitoring were grouped in the following categories: weather and climate, biotic integrity, water quality, hydrology, and physical terrain.

WEATHER AND CLIMATE

FUNDAMENTAL OBJECTIVE:

Determine weather and climate patterns for improving planning model predictions and aiding in the understanding of the drivers that impact the system. Atmospheric and oceanic processes serve as drivers of coastal environmental change through their generation of weather, as defined by climatic variables, and extreme weather events (e.g., storms), as well as through control of oceanic boundary conditions (e.g., waves and currents). Key climatic variables needed for documenting drivers of coastal change include potential evapotranspiration (PET), precipitation, and wind speed and direction (Table 1; Appendix I, Figure 92). All of these variables are also available for the Coastal Master Plan Integrated Compartment Models (ICM) for either ground-truthing, initialization, calibration, or validation. Additional climatic variables that are often used as explanatory variables include air temperature and solar radiation and these can also be collected concurrently as part of the same sensor packages that collect the other variables of interest.

Table 1. Monitoring variables and objectives for weather and climate.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Potential Evapo- transpiration	Document PET patterns to support planning models and the characterization of evapotranspiration.	Evapotranspiration (ET) is the primary process by which wetlands lose water, thus, increases in ET as a result of climate change may lead to adverse effects on wetlands (Winter, 2000). Direct measurements of evapotranspiration can be challenging, so PET is a more typical metric and is defined as the total amount of liquid water that could be consumed (i.e., water demand) by regional vegetation and evaporated by solar energy.
Precipitation Document precipitation patterns in support of planning models and the characterization of precipitation events.		Precipitation is a major component of the hydrologic cycle and influences the quantity of both surface water and groundwater. Precipitation depth defines the amount of terrestrial water introduced during a precipitation event and its intensity influences the amount of precipitation that is converted to runoff.
Wind	Document wind speed and direction to improve the understanding of the processes that impact water circulation and mixing, wave dynamics, and marsh edge erosion.	Winds associated with local weather, winter cold fronts, and tropical cyclones influence coastal water circulation patterns through increasing or decreasing water levels and resuspension and redistribution of particulates (Booth et al., 2000). Winds may also indirectly impact shorelines through wave attack, which can lead to erosion and damage to vegetative communities (Tonelli et al., 2010).

BIOTIC INTEGRITY

FUNDAMENTAL OBJECTIVE:

Document changes in the distribution and condition of biotic communities that represent important ecological elements and are responsive to system drivers.

Biotic integrity is a term used to describe the systems' elements (e.g., populations, landscapes), as well as the underlying processes that generate and maintain those elements (e.g., abundance fluctuation, soil formation; Angermeier & Karr, 1994). The monitoring variables selected for tracking the biotic integrity of terrestrial, pelagic, and benthic communities of the coastal environment include nekton community composition, oyster biomass, wetland soil condition, wetland vegetation community composition, and wetland vegetation biomass (Table 2). In addition to using these variables for assessing system status and response to drivers, many of these variables, with the exception of wetland biomass, have been key inputs to the 2017 Coastal Master Plan either in the ICM, Ecopath with Ecosim (EwE), or Advanced Circulation (ADCIRC) models. Wetland biomass is a necessary parameter for the diversion planning studies, including those being conducted under the Mississippi River Hydrodynamic and Delta Management Study (MRHDMS).

Table 2. Monitoring variables and objectives for biotic integrity.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Nekton community composition	Document changes in species composition for commercially and recreationally important species, as well as, representative guilds of fish and shellfish to: (1) evaluate distributional patterns among freshwater, estuarine, and inshore shelf habitats and (2) evaluate habitat association patterns.	Future large-scale changes in the coastal environment resulting from restoration activities and natural system drivers have the potential to substantially change the community composition and food web dynamics of the system (Piazza & La Peyre, 2011; Rozas & Minello, 2011). Nekton data collected using standardized gear can be used to measure relative abundance, to develop diversity indices within estuarine habitats.
Oyster biomass	Document changes in oyster biomass to assess the status and trend of the resource across estuarine zones and evaluate habitat association patterns.	The distribution of oysters within an estuary is largely a function of salinity, freshwater input, depth, and substrate (Melancon et al., 1998), although sedimentation, coastal disturbances and overharvesting are also threats to their distribution (Oyster Technical Task Force, 2012). Storm surge and wave action can also result in the destruction of oyster reefs, killing of spat and juvenile oysters, or displacement of oysters onto habitats that cannot support them (Banks et al., 2007).
Soil condition	Document changes in soil condition (organic matter content and bulk density) to improve understanding of the effect of climate, hydrology, geomorphology, and management activities on wetlands sustainability.	Bulk density is used to estimate and evaluate many physical soil properties, such as porosity, water retention, buoyancy and compressibility (Ruehlmann & Körschens, 2009). Organic matter and mineral content of wetland soils are key determinants of soil development and are often used to describe the roles of organic accumulation—derived from above- and below-ground plant material—and mineral sediment deposition (Neubauer, 2008; Nyman et al., 2006). Both processes will vary with plant communities and other aspects of wetland dynamics, including soil inundation, drainage, redox potential, and other biogeochemical processes (Reddy et al., 2000).
Wetland vegetation biomass	Document changes in wetland above- and belowground biomass to improve understanding of the effect of climate, hydrology, geomorphology, and management activities on coastal habitats and plant productivity.	Wetland vegetation biomass refers to both the above- and belowground components of the plant. Biomass is a function of inundation, nutrient concentrations, soil properties, and for plants with C3 metabolisms, atmospheric CO2 (Bazzaz, 1990; Day et al., 2013; Kirwan & Guntenspergen, 2012). Measurements of biomass over time can be used to evaluate wetland primary productivity.
Wetland vegetation community composition	Document changes in forested and herbaceous wetland vegetation species composition to evaluate responses to episodic forcing events and improve understanding of the effect of climate, hydrology, geomorphology, and management activities in coastal habitats.	The species composition of communities found along the coast is a reflection of the relative influence of marine and terrestrial drivers and the underlying geologic setting of the region. Given their geographical position in low-lying coastal areas, wetlands face an array of climate-linked challenges, from rising sea levels to reduced freshwater input and drought conditions (Battaglia et al., 2012).

WATER QUALITY

FUNDAMENTAL OBJECTIVE:

Document changes in key water quality variables in estuarine open water bodies from the Gulf of Mexico boundary to upland endpoints that are sensitive to system drivers and are critical for understanding system dynamics

Water quality is an important attribute of estuaries that encompasses water characteristics including salinity, turbidity, dissolved oxygen (DO), chlorophyll a, and nutrients (total nitrogen, total phosphorus and silicate). These variables inform understanding of the ecosystem status of pelagic and benthic communities, estuarine and marine wildlife, and soil properties of adjacent wetlands (Table 3; Appendix I, Figure 96). Further, nearly all of these variables are inputs to the 2017 Coastal Master Plan models and MRHDMS.

Table 3. Monitoring variables and objectives for water quality.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Chlorophyll a	Document chlorophyll a concentrations as an indicator of algal biomass to characterize primary productivity and capture short-term changes that may result from influences of tides, river discharge, storms, management activities, or other events.	Chlorophyll a is as an indicator of pelagic primary production by phytoplankton (i.e., total quantity of carbon produced by primary producers) and indicates the presence of phytoplankton blooms in estuarine open waters. Phytoplankton blooms are controlled by several factors, such as nutrient loading, nutrient cycling, light availability, water residence time, temperature, and grazing by zooplankton and benthic filter feeders (Boyer et al., 2009).
Dissolved oxygen (DO)	Document DO concentrations within the estuary to characterize the health of open water bodies and to capture short-term changes that may result from tides, river discharge, storms, management activities, or other events.	DO is a measure of the amount of oxygen dissolved in water, in mg L-1 or percent saturation and enters surface water through the absorption of atmospheric oxygen and from primary production. DO is necessary for pelagic and benthic metabolic processes (i.e., respiration; (Kemp et al., 1992); reductions in DO levels can result in habitat shifts or changes in community structure of aquatic fauna (Rakocinski et al., 1992; Rozas et al., 2005) and nutrient release (Valiela, 1995).
Nutrient constituents	Characterize nutrient inputs and cycling by documenting concentration patterns of total nitrogen (TN), total phosphorus (TP), and silicate, in order to improve understanding of primary productivity within the estuary.	Measurements of estuarine water nutrient concentrations provides information on nutrient inputs to the system and potential effects upon biotic communities and eutrophication status (Bricker et al., 1999; Nixon, 1995). Total nitrogen, total phosphorus, and silicate are important for freshwater and marine phytoplankton production and inputs have shown large changes over time (Turner & Rabalais, 1991).
Salinity	Document changes in key estuarine isohalines in response to changes in freshwater and marine flux, sea level, and climate and to detect short-term changes in salinity that may result from tides, riverine inputs, storms, management activities, or other events.	Estuarine salinity patterns coincide with the distribution, growth, and productivity of nekton communities (Adamack et al., 2012; Minello et al., 2003; Zimmerman et al., 2000), zonation patterns of vegetation (Pennings et al., 2005), and ultimately the functions and services wetlands provide (Odum, 1988). As an essential characteristic of the coastal system, salinity is a key variable in ecological and hydrodynamic models and forecasting capabilities are limited by inadequate information of salinity patterns in the estuary (Habib et al., 2007).
Turbidity	Document turbidity in estuarine open water bodies to support planning models and to capture short-term changes that may result from tides, river discharge, storms, management activities, or other events.	Turbidity is a characteristic of estuarine water quality that quantifies the clarity of the water due to suspended particulates. Turbidity is influenced by phytoplankton blooms as well as riverine discharge and wind events which transport or resuspend particulates and affect water residence time (Allison et al., 2013; Cloern, 1987; Lane et al., 2007).
Suspended Sediment Concentration	Document suspended sediment concentration in littoral systems to allow for extrapolation of regional-scale sediment fluxes and improve understanding of the processes that deposit sediments.	The concentration of the total suspended solids (TSS) refers to the mineral:organic content and grain size information as a volumetric measurement in mg L-1. Statistical relationships can also be developed in order to use measurements in Nephelometric Turbidity Units (NTU) as a predictor of TSS concentrations, if the relationships are based on measurements collected in the same place and time. TSS (in mg L-1) is a critical input variable for calibrating and validating sediment transport in the State's planning models.

HYDROLOGY

FUNDAMENTAL OBJECTIVE:

Document hydrologic changes in open water bodies and major canals to improve understanding of drainage network and land-building potential.

Hydrology encompasses the movement and transport of water in response to natural processes and anthropogenic events. Monitoring of current velocity, water level, and waves is essential for understanding physical changes to water bodies, as well as the movement and transport of water itself (Table 4; Appendix I, Figure 97). Water levels, currents, and waves are also key variables for the 2017 Coastal Master Plan effort.

Table 4. Monitoring variables and objectives for hydrology.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Current velocity	Identify significant large-scale circulation patterns in coastal water bodies from spatially, temporally, and depth-averaged velocities to support planning models and model development for sediment transport and deposition.	Currents are influenced by tides and winds, among other factors, and contribute significantly to the flow and exchange of freshwater, nutrients, sediments, and organic material between the Gulf of Mexico and estuaries. High-resolution measurements can meet the modeling needs of establishing boundary conditions and quantifying exchange points.
Water level	Document changes in water levels relative to vertical datum that may result from climate, sea levels, tides, river discharge, storms, management activities, or other events.	Water level refers to the depth of the water relative to a vertical datum, such as mean sea level or NAVD88. Tidal ranges in coastal Louisiana are relatively small (~0.3 m), but strong southerly winds can force water into estuaries and wetlands while northerly winds push water out, causing water levels to fluctuate (Inoue et al., 2008). Water levels have important implications on water quality dynamics and marsh surface responses to inundation.
Waves	Document wave dynamics (height, direction, period) to improve understanding of the processes that impact water circulation, mixing and marsh edge erosion in the estuarine and nearshore environment, and characterize offshore boundary conditions.	Wave generation is a function of fetch, such that the presence of emergent vegetation and other landforms can strongly limit the maximum wave heights (Fagherazzi & Wiberg, 2009). The expansion and deepening of open water bodies due to subsidence and erosional processes could lead to higher-energy waves, which, in turn, could contribute to morphological and ecological changes in the estuary.

PHYSICAL TERRAIN

FUNDAMENTAL OBJECTIVE:

Determine topographical and areal changes of natural and built coastal landscapes in response to the cumulative effects of restoration and protection projects, natural processes, and other key drivers. The physical terrain of the coastal environment in this context refers to natural land (e.g., wetlands, barrier islands, uplands, ridges) and constructed features (e.g., spoil banks). The coastal terrain serves a multitude of functions from buffering storms, filtering nutrients, pollutants, and sediments, and supporting a variety of flora and fauna. As a result, severe land loss threatens all aspects of the coastal ecosystem, from increasing fetch in open water bodies to reducing habitat for ecologically important fish and wildlife. Bathymetry, surface elevation, and land area are monitored to track the physical changes to the landscape and are key variables for the 2017 Master Plan (Table 5).

Table 5. Monitoring variables and objectives for physical terrain.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Bathymetry	Document bathymetric changes to resolve long term (5-10 years) and storm-driven morphological evolution trends.	Detailed comparative bathymetric geometries provide insight into the change in the basin, local hydrodynamic regimes, and also littoral sediment availability and dynamics.
Land area	Document changes in land area distribution to evaluate wetlands, uplands, ridges, and barrier shoreline changes and improve understanding of the effect of climate, hydrology, geomorphology, and management activities on coastal habitats.	The natural landscape serves a multitude of functions, including buffering storms, filtering nutrients, pollutants, and sediments, as well as supporting a variety of flora and fauna. As a result, severe land loss threatens all aspects of the coastal ecosystem, from increasing fetch in open water bodies to reducing habitat for ecologically important fish and wildlife (Chesney et al., 2000; Fagherazzi & Wiberg, 2009).
Surface elevation	Document subaerial topographical changes over time relative to a vertical datum to develop digital elevation models and to contribute to spatial maps of relative sea-level rise rates.	Surface elevation refers to the height of the land surface relative to a vertical datum, such as mean sea level or NAVD88. Large, short-term changes in land elevation can occur because of changes in astronomical tides and meteorological conditions (e.g., pressure or wind-driven events) that influence subsurface processes, above ground production, and sediment deposition, among others factors (Cahoon et al., 2011). Long-term trends in elevation are a function of underlying tectonics, Holocene sediment compaction, sediment loading, glacial isostatic adjustment, surface water drainage and management, and sea level rise (Yuill et al., 2009).

HUMAN SYSTEM

The human component of a coupled human-natural system is a coherent system of biophysical and social factors capable of adaptation and sustainability over time, exhibiting boundaries, resource flows, social structures, and dynamic continuity (Machlis et al., 1997). A number of critical resources are essential to sustain the human system, including natural resources, socioeconomic resources, and cultural resources. Changes to any of these critical resources have the potential to impact the overall well-being and sustainability of the human communities that rely on them. This is especially true of coastal Louisiana, where natural and anthropogenic alterations to the landscape may impact any of these critical resources in numerous ways, thereby placing many of the region's traditional renewable resource extraction cultures and communities at risk (Laska et al., 2005). The human system monitoring plan developed here identifies and quantifies changes to the coupled human-environmental ecosystem and the critical resources that sustain it.

One of the primary challenges for an effective human system monitoring plan is identifying relevant variables and available community scale data (Charnley & Stuart, 2006). Social variables have specific discrete, nominal, or continuous measures that are used to assess changes in human populations, communities, and social relationships resulting from a development project or policy change (Burdge, 1994). The monitoring plan to measure socioeconomic change in coastal Louisiana utilizes several variables, objectives, and approaches grouped into the following categories: population and demographics, housing and community characteristics, economy and employment, ecosystem dependency, residential properties protection, and critical infrastructure and essential services protection.

An effective socioeconomic monitoring plan should be able to identify changes in overall population, vulnerable population subgroups, including low income and minority populations, key economic sectors, housing characteristics, and property values to establish baseline information and determine if any social impacts are occurring within a defined

study area (Colten & Hemmerling, 2014). This document presents a monitoring framework to assess change and trends within a broad suite of social and economic monitoring variables derived from a number of secondary data sources. The decennial census and ACS are the most comprehensive secondary datasets available upon which to develop baseline conditions, gathering information about population and income distribution, employment by sector, education, housing type, and other social factors at the community, county (parish), regional, and state levels. ACS is a nationwide, continuous survey designed to provide demographic, housing, social, and economic data for all established census geographies. It replaced the decennial census long form in 2010 and provides periodic measures that describe the average characteristics of population and housing over a 1-, 3-, and 5-year period of data collection. As shown in this report, there are some instances in which Census Bureau data will need to be supplemented by information from relevant state, parish, and municipal entities.

There are several limitations to using only secondary data sources to assess change in the human system. Chief among these limitations is data availability. In some cases, data on certain topics simply do not exist in any secondary data source. In other cases, the data may not be available at a scale useful for analysis. There are far more validated, stable, comprehensive data available at the parish level than other smaller levels of aggregation, such as the census block group or tract. In addition, the data that are available at this smaller level of aggregation tend to be less reliable (Jackson et al., 2004). Finally, it is difficult to establish causality from social indicators and monitoring variables alone, as inferences about individual actions cannot be drawn from the aggregate population. For certain variables presented here, specifically those related to the non-economic usage of natural resources, community-based longitudinal surveys will be needed to gather primary data not available in existing data sets.

POPULATION AND DEMOGRAPHICS

FUNDAMENTAL OBJECTIVE:

Determine changes in population at both individual and family scales. Any changes in demographic variables should also be identified, including the racial and ethnic makeup of local communities.

Social vulnerability involves the relative ability of an individual, household, or community to respond appropriately to changing environmental conditions (Levine et al., 2007). It is a function of exposure, sensitivity, and response, and it requires measurements of both environmental and social systems (Cutter & Finch, 2008). An effective coastwide human system monitoring plan must evaluate changes in community structure, including changes in overall population, the number of households, and the racial and ethnic makeup of the communities, particularly when management decisions have the potential to impact exposure levels (Table 6).

Table 6. Monitoring variables and objectives for population and demographics.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Number of households	Determine changes in the total number of family and nonfamily households in local population centers and occupational communities to improve understanding of the effects of management activities and coastal dynamics on community composition.	Households, in general, are much less likely to leave their community than are individuals (Gubhaju & De Jong, 2009). Increasing numbers of households in communities are therefore indicative of increasing levels of community resilience.
Total population	Determine changes in the total population in local population centers and occupational communities to improve understanding of the effects of management activities and coastal dynamics on population growth.	Population stability and the speed to which population levels are able to recover following extreme hazards events are predictive indicators of community resilience.
Race and ethnicity	Determine changes in the total number of minority residents in local population centers and occupational communities to identify areas of social justice concern and improve understanding of community composition and the effects of management activities and coastal dynamics on minority groups.	Racial and ethnic status often influences the ability of communities to adaptively respond to changing environmental conditions. The effect of racial and ethnic factors on adaptability is most likely seen the interaction of race and ethnicity with other drivers, particularly economic (Black et al., 2011).

HOUSING AND COMMUNITY CHARACTERISTICS

FUNDAMENTAL OBJECTIVE:

Determine changes to the housing characteristics of local communities. This includes changes in home ownership, vacancy rates, rent, and home values.

Housing and community characteristics are important variables for monitoring both community vulnerability and resilience. The value and quality of residential construction are both key elements of community resilience (Cutter et al., 2003). Additionally, the status of the housing market and residential occupancy rates are key indicators of community recovery following natural hazards events (Table 7).

Table 7. Monitoring variables and objectives for housing and community characteristics.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Residential stability	Document changes in residential movement to improve the understanding of how management activities and coastal dynamics affect population in-migration and outmigration in local population centers and occupational communities.	Residential stability is a key measure of resilience that establishes the length of time that people reside in the same household. Communities that maintain population levels through time exhibit higher amounts of residential stability and are therefore inherently more resilient than those communities with a large turnover in population.
Home ownership	Document changes in home ownership rates to improve the understanding of how management activities and coastal dynamics affect the overall viability of housing markets in local population centers and occupational communities	Increasing levels of home ownership are indicative of higher levels of community resilience. Low home ownership rates often point to a population that is either highly transient or without the financial resources for home ownership (Cutter et al., 2003).
Residential occupancy rates	Document changes to the number of vacant nonseasonal properties to improve understanding of how population shifts impact the physical structure and economic condition of local population centers and occupational communities.	The amount of vacant housing in a community is a measure of recovery from an environmental or economic shock. Higher levels of vacant housing suggest a loss of resilience, an indication that previous residents of the community have not returned to their previous residences.
Property values	Document changes to local rent and property values to improve the understanding of how management activities and coastal dynamics affect the real estate market in local population centers and occupational communities.	Changing property values are often indicative of changes in both economic conditions and quality of life within a community. These changes may be the result of inherent changes to the structure of the community, such as changing demographics or income levels, or they may be a reaction to an outside shock, such as a natural or technological hazard event.

ECONOMY AND EMPLOYMENT

FUNDAMENTAL OBJECTIVE:

Determine changes to the income levels, poverty rates, and unemployment rates of families and individuals at the community level. Economy and employment are key components of community resilience (Table 8). Many of these factors are highly codependent with other demographic factors such as race and ethnicity. The impacts of environmental and economic change on several different disadvantaged socioeconomic groups may be similar (Black et al., 2011). Socioeconomic status is a primary indicator of the ability of the population to respond to changing environmental conditions. Where communities are highly dependent on natural resource employment, for example, changing environmental conditions may result in a loss of economic opportunities or a shifting of job locations. Lowincome residents are often unable to effectively adapt to these new conditions, often resulting in increased unemployment levels and higher poverty rates.

Table 8. Monitoring variables and objectives for economy and employment.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Economic activity	Determine changes in the number and type of businesses in local population centers and occupational communities to improve understanding of the effects of management activities and coastal dynamics on economic activity.	The ability of communities to retain and attract business is a key indicator of community resilience. Communities with a strong entrepreneurial culture experience improved economic outcomes, such as increasing median household income, lowering of poverty, and decreasing income inequality (Blanchard et al., 2012).
Income levels	Measure changes to individual and family income levels to improve the understanding of the effects management activities and coastal dynamics have on the income levels of local population centers and occupational community residents.	Socioeconomic status is a primary indicator of community resilience. Wealth and income directly impact the ability of residents to effectively adapt to changing social and environmental conditions, including the ability of residents to relocate or evacuate in response to natural hazards events (Black et al., 2011).
Poverty rates	Estimate 5-year changes in the total number of residents with income below the poverty line in local population centers and occupational communities to improve the understanding of poverty rates and the effects of management activities and coastal dynamics on low-income residents.	The percentage of the population living in poverty is a key social vulnerability and a direct measure of the community's ability to both evacuate and locate housing when faced with changing environmental conditions and natural hazards events (Levine et al., 2007).
Unemployment levels	Estimate changes to unemployment levels in local population centers and occupational communities to improve the understanding of the effects management activities and coastal dynamics have on the local economy, jobs, and employment.	The loss of business and therefore employment opportunities is a key driver of population outmigration and an indicator of a healthy economy, which enhances community resilience. The relocation of businesses out of local communities increases the costs of employment, resulting in greater joblessness, particularly among low income and minority residents (Fernandez, 1994).

ECOSYSTEM DEPENDENCY

FUNDAMENTAL OBJECTIVE:

Determine the degree to which local communities are reliant upon natural resources for their economic and social well-being. This includes employment based upon natural resource extraction as well as tourism and other recreational or cultural uses of natural resources.

Ecosystem dependency examines natural resources as they relate to community well-being (Table 9). Disruptions to ecological systems could impact coastal fisheries and other natural resource-based economic activities upon which many communities depend. The potential consequences of such disruptions are many and varied, including a loss of income, loss of subsistence food sources and a resultant decline of health, and ultimately out-migration of the population due to the loss of employment opportunities (Colten, 2014). Some of these nonmarket impacts of ecological change on natural resource-dependent communities can be identified using qualitative community survey methods.

Table 9. Monitoring variables and objectives for ecosystem dependency.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Natural resource extraction	Determine changes to levels of natural resource extraction within local communities to improve the understanding of the effect of biophysical processes on natural resources upon which resourcedependent occupational communities depend.	Environmental change can reduce crop, livestock, and fisheries productivity within a community, in addition to damaging assets used in the extraction of these resources (Black et al., 2011). Such impacts have the potential to reduce community resilience by reducing household income and community outmigration.
Cultural and traditional use of natural resources	Identify and measure change in the cultural and traditional uses of natural resources in local communities to improve the understanding of the role natural resources play in a resource-dependent occupational community's cultural heritage and subsistence.	The traditional renewable natural resource extraction cultures of the Louisiana coast rely on the integrity and health of the ecosystem for their well-being (Laska et al., 2005). The non-market uses of natural resources are important components in the cultural heritage of many coastal communities.
Natural resource- based employment	Identify changes in natural resource- based employment levels by sector (including agriculture, fisheries, and oil and gas) to improve the understanding of the effects of changing levels of natural resource availability on livelihoods and community structure in resource- dependent occupational communities.	Some occupations, especially those involving resource extraction, may be severely impacted by changing environmental conditions, natural hazard events, and technological disasters. Those workers engaged in agriculture may similarly suffer, as employment and income levels decline (Cutter et al., 2003)
Tourism and recreational use of natural resources	Identify and measure change in important recreational uses of natural resources in occupational communities to improve the understanding of the role that natural resource-based tourism and recreation play in local economies.	As environmental and economic changes increasingly impact levels of natural resource extraction in resource dependent communities, some residents adapt by developing alternate sources of income. The growth of ecotourism and sport fishing, for example, are growing industries in coastal Louisiana.

RESIDENTIAL PROPERTIES PROTECTION

FUNDAMENTAL OBJECTIVE:

Determine changes to the level of residential structural and nonstructural protection attained within local communities.

Louisiana's coastal zone is a highly dynamic environment, where land management decisions must necessarily integrate coastal restoration with coastal protection in order to reduce the social vulnerability of coastal communities (Peyronnin et al., 2013). Government policies have provided insurance subsidies and structural protection to encourage the development of coastal floodplains. Residential properties still located within flood hazard areas are clearly more vulnerable to changing environmental conditions. Some homeowners are able to partially reduce their risk by constructing within existing levee systems, while others may utilize nonstructural protection projects, such as flood proofing, retrofitting with individual mitigation measures, and elevating their homes (Table 10).

Table 10. Monitoring variables and objectives for protection of residential properties.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Residential risk reduction	Identify changes in the percentage and number of households in designated Special Flood Hazard Areas (SFHAs) at the census block group-level to improve the understanding of how management decisions and coastal dynamics influence community risk.	A common way to delineate the threat of flood is using the 100-year floodplain, also known as the Special Flood Hazard Area (SFHA) (Maantay & Maroko, 2009). The SFHA is a compilation of selected high risk zones (A and V zones) as designated by the Federal Emergency Management Agency (FEMA).
Households receiving structural protection	Identify changes in the percentage of households with structural protection to improve the understanding of how management decisions and coastal dynamics influence community risk and how this risk affects residential population growth.	The use of structural measures such as earthen levees, concrete walls, floodgates, and pump systems remains an effective tool in controlling floods and reducing flood losses in coastal communities.
Residential properties receiving nonstructural protection	Identify changes in the percentage and number of residential structures elevated above the 100-year floodplain, residential structures flood proofed or retrofitted with individual mitigation measures, and the percentage and number of acquisitions and buyouts to improve understanding of how management decisions and coastal dynamics influence community vulnerability.	Flood risks cannot be reduced purely by structural means such as building levees. Nonstructural project measures such as raising a building's elevation or flood proofing residential structures can effectively reduce residential risk levels (CPRA (Coastal Protection and Restoration Authority), 2012).

CRITICAL INFRASTRUCTURE AND ESSENTIAL SERVICES PROTECTION

FUNDAMENTAL OBJECTIVE:

Determine the number of essential facilities and critical infrastructure (including hospitals, fire stations, police stations, schools, transportation facilities, fuel supply, water supply, wastewater treatment systems, electricity distribution systems, and flood protection systems) currently protected by structural and nonstructural projects.

The ability of a community to adapt to changing environmental conditions and rebound from coastal hazards events is dependent in large part on how quickly essential services can be restored. Coastal Louisiana has a complex system of public utilities and infrastructure that supports local communities. Because of the proximity of this infrastructure to the coast and the threat of powerful storm events, local and parish governments must construct and maintain additional infrastructure and engineering systems to protect them (Laska et al., 2005). Where large structural projects are not feasible, or where additional protective measures are desired, these essential facilities can be flood-proofed, retrofitted with individual mitigation measures, or elevated above base flood levels. Communities with well protected infrastructure are decidedly more resilient than those without (Table 11).

Table 11. Monitoring variables and objectives for the protection of critical infrastructure and essential services.

MONITORING VARIABLE	OBJECTIVE	BACKGROUND
Risk reduction for essential facilities and critical infrastructure	Identify changes in the percentage and number of essential facilities and critical infrastructure located in SFHAs at the census block group-level to improve the understanding of how resilient communities are to risk.	Loss of sewers, bridges, water, communications, and transportation infrastructure compounds potential disaster losses and may place a heavy financial burden on smaller communities that lack the resources to rebuild (Cutter et al., 2003). The location of this infrastructure in areas of heightened flood risk increases the vulnerability of local communities.
Miles of levees created and maintained	Determine miles of newly created, federally certified levees and changes to existing levee alignments, geometries, elevations, and fortifications to improve understanding of how management decisions influence community risk.	As the density of people and infrastructure in floodplains increases, the use of structural measures such as levees remains an effective tool in controlling floods and reducing flood losses. However, these systems can fail due to the magnitude of flood events, or poor initial construction (Burton & Cutter, 2008; Campanella, 2010).
Number of essential facilities and critical infrastructure receiving structural protection	Identify changes in the percentage and number of essential facilities and critical infrastructure protected by structural projects.	The loss of infrastructure may place an insurmountable financial burden on smaller communities that lack the resource to rebuild (Cutter et al., 2003). To protect this infrastructure, local parishes and communities may need to construct and maintain additional engineering systems.
Public and commercial properties receiving nonstructural protection	Identify changes in the percentage and number of public and commercial structures elevated above the 100-year flood-proofed or retrofitted with individual mitigation measures, and the percentage and number of acquisitions and buyouts to improve understanding of how resilient communities are to risk.	The number of commercial and industrial buildings is an indicator of the economic health of a community. Potential losses in the business community present long-term issues with recovery after an event (Cutter et al., 2003). Nonstructural project measures such as raising a building's elevation or flood proofing public and commercial structures can effectively reduce risk levels (CPRA (Coastal Protection and Restoration Authority), 2012).

COUPLING OF THE NATURAL-HUMAN SYSTEMS

Although presented independently, the variables identified for the human and natural systems are closely coupled in Louisiana. Understanding of this coupled human-natural system requires knowledge of (1) the processes that link the human and natural systems, 2) interactions and feedback between the systems, and (3) how interactions between the human and natural systems occur within and across spatial and temporal scales (Liu et al., 2007). The relative strength of the coupling between the natural and human systems is hypothesized to be strongest when large areas of human-occupied land vulnerable to changes in the natural system are assigned monetary values by economic processes and measures are taken to protect these lands from damage (Werner and McNamara 2007). Such is the case for coastal Louisiana. The underlying properties of the natural system such as geology, climate, and the availability of natural resources have influenced where communities have developed while economic processes have allowed these communities to persist over time. The growth and development of these communities have in turn reshaped the natural system and the associated ecosystem services that the human system relies upon. On a shorter time frame, episodic events acting on the natural system, such as storms or droughts, often result in more immediate impacts on the human system, such as loss of economic viability or population shifts.

Although direct effects of the human system on the natural system, and vice versa, are often more apparent, the feedback loop between human and natural systems is less clear and requires an integrated analysis of coupled social-ecological systems. For

coastal Louisiana, the SWAMP monitoring categories can be placed in a framework for an integrated analysis, based from the concepts of Chaplin et al. (2006) and the Millennium Ecosystem Assessment (2005a). The framework illustrates how the SWAMP variables are broadly linked within and between the natural and human systems and the potential interactions across spatial and temporal scales (Figure 3). These linkages include direct environmental impacts on the human system (e.g., flooding leading to loss of property), institutional responses to the environment (e.g., restoration activities leading to newly created land), and indirect pathways in which changes in the human and natural environments manifest themselves through changes in ecosystem dependency. For example, changes in biotic integrity can impact fisheries landings, a key measure of ecosystem dependency, which can in turn impact the socioeconomic characteristics of natural resource-dependent communities (Figure 3). These relationships may also cross scales, where large-scale processes within one system may impact both large and small scales in another. For example, changes in global market value of commercially important fisheries (large scale), can have implications on fishing pressure or natural resourcebased employment and potentially reduced natural resource extraction within the basin (small scale). On the environmental side, variable overflow patterns in the Mississippi River, which are largely driven by upstream precipitation patterns (large scale), drive crawfish abundance in the Atchafalaya floodplain (small scale) and can lead to unpredictable wild harvest and be a stimulus to the development of crawfish aquaculture (McClain and Romaire, 2004). Through the monitoring of societal metrics related to human wellbeing and human resilience and monitoring of ecosystem condition and physical processes, SWAMP can provide the basis for an integrated understanding of the coupling of human and natural systems.

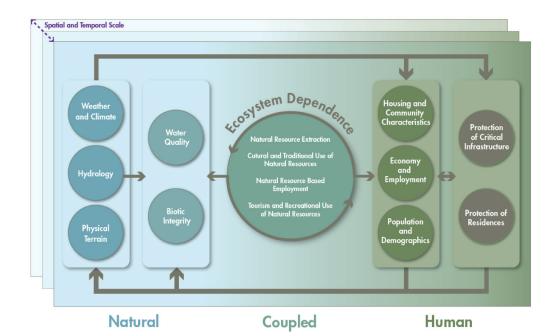


Figure 3. Nesting smallerscale monitoring plans within larger-scale plans ensures a consistent framework for data collection activities.

NATURAL SYSTEM SAMPLING DESIGN

BUILDING ON EXISTING MONITORING

Point and Continuous Sampling

The process of developing SWAMP relies heavily on the use of existing monitoring programs identified in the SWAMP inventory geodatabase. The SWAMP inventory illustrates a wealth of current data collection activities that are directly relevant to each of the monitoring categories identified within this report. A brief summary of the active monitoring programs that collect data relevant to SWAMP is provided below, and how the data are integrated into the proposed monitoring plans for the Barataria Basin and Pontchartrain Region is described in detail in the Monitoring Plan and Appendix II. Weather and oceanographic data are mainly collected by the National Oceanic and Atmospheric Administration (NOAA) through several different weather observing systems available through their National Climatic Data Center (NCDC) and the National Data Buoy Center (NDBC), as well as select sites operated by the USGS, Louisiana Universities Marine Consortium (LUMCON), and Wave-Current-Surge Information System (WAVCIS; Figure 4). Data types collected at each station vary, but typically include some combination of wind speed and direction, gusts, barometric pressure, air temperature, water temperature, wave height, wave period, wave direction, and current speed and direction. Model predicted datasets are also available on larger scales from the NOAA National Weather Service's Advanced Hydrologic Prediction Service and the NOAA Earth Systems Research Laboratory Physical Sciences Division . Water quality data are collected by the Louisiana Department of Environmental Quality program, and USGS and the CPRA for the CRMS program (Figure 5). LDEQ AWQ measures water quality variables discretely on a monthly basis every four years, while the USGS and CRMS programs monitor specific conductance, water temperature, salinity, and gauge height in real-time. Biotic integrity data are collected by the Louisiana Department of Wildlife and Fisheries (LDWF) and CPRA. LDWF collects fisheriesindependent data using several different gear types that target specific aquatic habitats (e.g., shallow marsh edge habitats) and life stages of nekton, while CPRA samples community composition, accretion, surface elevation change, and soil properties in herbaceous wetlands and swamp habitats for the CRMS program (Figure 6). Lastly, CPRA's BICM program collects data to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition (Figure 7). Utilization of these existing monitoring programs is described in detail within the Natural Systems Monitoring Plan section below.

i http://water.weather.gov/precip/

ii http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html

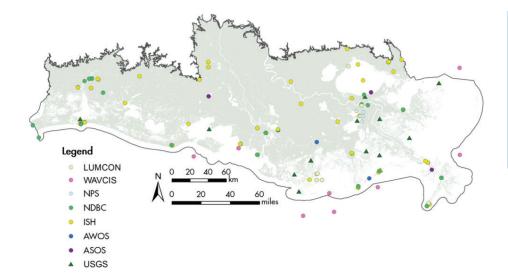
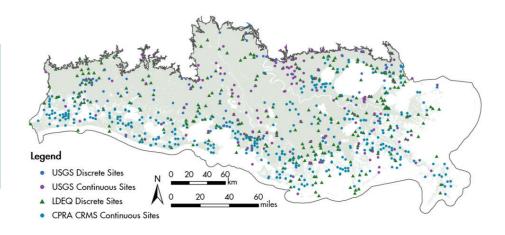



Figure 4. Existing weather and oceanographic monitoring sites.

Legend key: Louisiana Universities
Marine Consortium (LUMCON),
Wave-Current-Surge Information System
(WAVCIS), National Park Service (NPS),
National Data Buoy Center (NDBC),
Integrated Surface Hourly (ISH),
Automated Weather Observing System
(AWOS), Automated Surface Observing
System (ASOS), and United States
Geological Survey (USGS).

Figure 5. Existing weather and oceanographic monitoring sites.

Legend key: Louisiana Universities
Marine Consortium (LUMCON),
Wave-Current-Surge Information System
(WAVCIS), National Park Service (NPS),
National Data Buoy Center (NDBC),
Integrated Surface Hourly (ISH),
Automated Weather Observing System
(AWOS), Automated Surface Observing
System (ASOS).

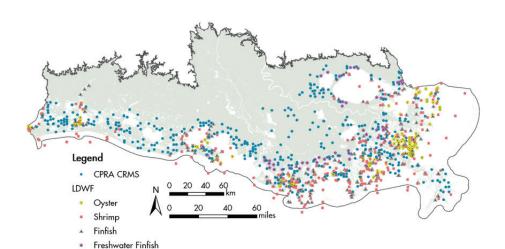


Figure 6. Existing biotic integrity sites for sampling nekton, wetland vegetation, and soil.

Nekton community composition sampling sites are operated by LDWF. Wetland community and soil condition sampling sites are operated by CPRA.

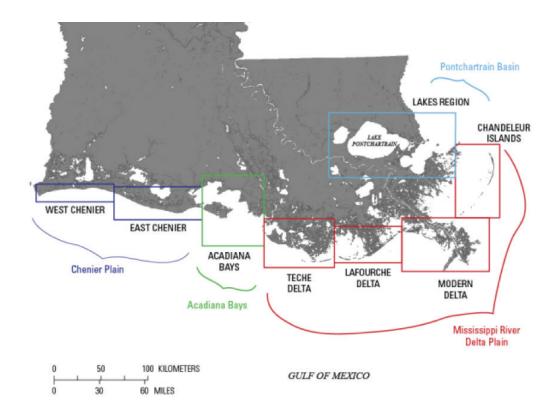


Figure 7. Geologic and physiographic setting of regions used in BICM analyses.

Remote Sensing

Remotely sensed data are advantageous in that they allow for large spatial coverage and detection of spatial and temporal environmental gradients (Xie, 2008). A summary of satellite types and what they are used for is provided in Table 12. For water-based monitoring, remote sensing methodologies have successfully been used in Louisiana for mapping near surface temperature and total suspended sediment gradients using data from a variety of satellites including, NOAA's Polar Orbiting Environmental Satellites equipped with Advanced Very High Resolution Radiometer (AVHRR), the Earth Observing System fleet equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, and the next generation Visible Infrared Imaging Radiometer Suite (VIIRS) (Myint and Walker, 2002; Walker et al., 2005). Accurate interpretations of these datasets into absolute values require atmospheric corrections and calibration against field data. These datasets can also be used qualitatively to identify the relative patterns in the environmental conditions, which may be helpful in calibrating hydrodynamic and water quality models. Remote sensing has been less successful in deriving salinity, chlorophyll a, and submerged aquatic vegetation in the coastal areas because high sediment concentrations in the water absorb light and decrease the reflectance, and require hyperspectral sensors and

more sophisticated algorthims to identify each substance in the water (Klemas, 2011). Some success in estimating chlorophyll a concentrations has been shown outside the coastal areas, however (Walker and Rabalais, 2006). For land-based monitoring, Landsat Thematic Mapper (TM) imagery can be used for identifying wetlands and other land cover types, particularly when multi-temporal datasets can be acquired (Ozesmi and Bauer, 2002) and have been used to develop land change rates in coastal Louisiana (Couvillion et al., 2017).. Analysis requires baseline imagery of low-water conditions and repeated imagery allows of evaluation of areal changes over time (e.g., Wang and Xu, 2009). The benefit of these satellite-derived datasets is the ability to cover large scales (coastwide) at frequencies not possible from ground-based measurements. These land-water maps are a critical component to the CRMS program. Estimates of biomass for emergent marsh vegetation are more difficult and are confounded by patch size, vertical stem morphology, high densities, and water inundation (Byrd et al., 2014). Although some remote sensing products have been incorporated into SWAMP already (e.g., land-water maps), the utility of other remote sensing is an area needing further research into how it can be effectively incorporated into SWAMP. As more efficient technologies and data processing algorithms evolve, it is envisioned that the data collection strategies within SWAMP will evolve as well.

Table 12. Satellite sensors for monitoring land features.

Features include land cover, land surface properties, and land and marine productivity.

PLATFORM	SENSOR	SPATIAL RESOLUTION AT NADIR	DATE OF OBSERVATIONS		
COARSE RESOLUTION SATELLITE SENSORS (> 1 KM)					
National Oceanic and Atmospheric Administration— Television and Infrared Observation Satellite	AVHRR	1.1km (local area coverage); 8km (global area coverage)	1978 - present		
Systéme Probatoire pour l' Observation de la Terre (SPOT)	VEGETATION	1.15KM	1998 - present		
Advanced Earth Observing Satellite - II	Polarization and Directionality of the Earth's Reflectances	7km x 6km	2002 - present		
SeaStar	Sea viewing Wide Field of View	1km (local coverage); 4km (global coverage)	1997 - present		
MODERATE	RESOLUTION SATELLITE SENS	ORS (250 M-1 KM)			
Advanced Earth Observing Satellite - II	Global Imager	250m - 1km	2002 - present		
Earth Observing System	MODIS	250m - 1,000m	1999 - present		
Earth Observing System	Multi-angle Imaging Spectroradiometer	275m	1999 - present		
Envisat	Medium Resolution Imaging Spectroradiometer	350m - 1,200m	2002 - present		
Envisat	Advanced Synthetic Aperture Radar	150m - 1,000m	2002 - present		
HIGH RES	OLUTION SATELLITE SENSORS	(20 M-250 M)A			
SPOT	High Resolution Visible Imaging System	20m; 10m (panchromatic)	1986 - present		
European Remote Sensing Satellite	Synthetic Aperture Radar	30m	1995 - present		
Radarsat		10m - 100m	1995 - present		
Landsat 1-3	Multispectral Scanner	83m	1972 - 1997		
Landsat 4-5	TM	30m (120m thermal-infrared band)	1984 - 2012		
Landsat 7	Enhanced TM	30m	1999 - present* *SLC error 2003		
Landsat 8	Operational Land Imager (OLI)	30m multi-spectral 15m panchromatic	2013 - present		
Earth Observing System	Advanced Spaceborne Thermal Emission and Reflection Radiometer	15m - 90m	1999 - present		
Indian Remote Sensing	Linear Imaging Self-Scanner	23m; 5.8m (panchromatic)	1995 - present		
VERY HIG	H RESOLUTION SATELLITE SEN	ISORS (< 20 M)A			
Japanese Earth Resources Satellite	Synthetic Aperture Radar	18m	1992 - 1998		
Sentinel-1A	C-Band Synthetic Aperture Radar	5m - 20m	2014 - present		
Sentinel-1B	C-Band Synthetic Aperture Radar	5m - 20m	2015 - present		
Sentinel-2A	Multi-spectral Instrument	10m - 60m	2015 - present		
Sentinel-2B	Multi-spectral Instrument	10m - 60m	2017 - present		
IKONOS		1m panchromatic; 4m multispectral	1999 - present		
QuickBird		0.61m panchromatic; 2.44m multispectral	2001 - present		
SPOT-5	High-Resolution Geometric – High- Resolution Stereoscopic	10m; 2.5m (panchromatic)	2002 - present		

PLATFORM	SENSOR	SPATIAL RESOLUTION AT NADIR	DATE OF OBSERVATIONS
SPOT-6	High-Resolution Geometric – High- Resolution Stereoscopic	6m; 1.5m (panchromatic)	2012 - present
SPOT-7	High-Resolution Geometric – High- Resolution Stereoscopic	6m; 1.5m (panchromatic)	2014 - present
Worldview-3	Panchromatic, multi-spectral, and SWIR	1.24m multispectral 0.31m panchromatic	2013 - present
Worldview-4	Panchromatic, multi-spectral, and SWIR	1.24m multispectral 0.31m panchromatic	2016 - present
GeoEye-1	Panchromatic, visible, NIR	1.84m multispectral 0.46m panchromatic	2008 - present
Dove Satellite Constellation	Visible and NIR	2.7m - 4.9m	Variable launch dates beginning in 2015

Lidar

The Lidar Data Acquisition Team at CPRA has been engaged in acquisition of elevational data for entire coastal Louisiana under a joint effort between CPRA and the USGS National Geospatial Program since 2011. CPRA completed the acquisition for Upper Delta Plain and the Chenier Plain. An area of about 3,805 mi2 was covered for the Upper Delta Plain Regional Lidar Acquisition from the Pearl River following interstates of I-12 and then I-10 to the East Atchafalaya River Guide Levee, and then south to Bayou Lafourche. The southern boundary extends east of Bayou Lafourche, bisecting Central Barataria Basin and then extending north-eastward to the northern shoreline of Lake Borgne. The acquisition window was between 23 January to 16 March 2017. The Chenier Plain Regional Lidar Acquisition covered an area of about 2,900 mi2 in western coastal Louisiana from Marone Point to the Texas border, encompassing the Acadian Bays and the Chenier Plain. Lidar data was acquired between 8 January to 3 March 2017.

Environmental acquisition conditions including seasonality, tidal water levels, river stage, wind speed, and wind direction were controlled to minimize potential wetland surface flooding. The lidar acquisition is a component of the National 3D Elevation Program and was acquired to published national lidar standards at Quality Level 2 with a vertical error of 10 cm RMSEz. The classified lidar product including LAS files and bare earth DEMs are available and archived in CIMS.

Subsidence Studies

Recently under Barataria Pilot project subsidence rates were calculated on the basis of direct measurement (Applied Coastal Research and Engineering, 2018). Subsidence in south Louisiana is a fundamental process and a major uncertainty influencing restoration planning and design and wetland habitats. Consolidation of Holocene deposits is considered the primary contributor to subsidence in the Mississippi River deltaic plain. Primary consolidation occurs as soil volume is reduced due to dewatering under the weight of overlying sediment. Thicker sediment deposits contain more interstitial water available for removal, which leads to high rates of subsidence as they consolidate. Understanding the causes and rates of subsidence across the Louisiana coastal zone is critical to successful planning and implementation for Coastal Master Plan projects.

The primary goal of the project undertaken in Barataria Basin is to conduct an assessment of recent subsidence rates within the Basin (Applied Coastal Research and Engineering, 2018). In particular, geodetic GPS elevation measurements for CORS primary benchmarks and CPRA/NGS secondary benchmarks were used to determine subsidence velocities. These data record short-term subsidence trends (4- to 15-year time series) from direct survey measurements that are expected to reflect conditions at proposed restoration sites over the next 20 to 50 years. Further, water-level gauge measurements were evaluated for documenting subsidence relative to eustatic sea-level rise estimates for the northern Gulf of Mexico. Because Holocene geology and sediment consolidation are primary factors controlling subsidence, defining the geological setting of Barataria Basin was deemed critical for understanding local geological controls and their impact on observed subsidence velocities. Three geological cross-sections depicting stratigraphy for northern, central, and southern Barataria Basin were developed on the basis of several deep borehole logs.

High-resolution geodetic GPS elevation measurements at 19 benchmarks (five CORS and 14 CPRA/NGS locations) were used to determine recent subsidence velocities for Barataria Basin. Net elevation changes at all stations equaled or exceeded predicted measurement uncertainties based on session duration (±2 cm). Water elevation change from two gauges in the southern part of the basin supplemented survey data, resulting in a range of subsidence velocities at 21 locations from -2 to -7 mm yr-1. Foundation/rod depths for benchmarks ranged from near surface to about 30-m deep. None of these foundations/rods were sleeved and thus were not isolated from surrounding consolidating sediment and associated downdrag forces. As such, subsidence velocities at these sites were considered representative for the entire sediment column. Subsidence velocity comparisons for deep and shallow rod benchmarks within a few kilometers of each other support this conclusion (CMS-BM-01 rod depth = 1 m and velocity = 5.6 mm yr-1; H359 rod depth = 24.4 m and velocity = -6.0 mm vr-1).

Spatial variability in subsidence velocities indicates a compelling relationship between subsidence and age, composition, and thickness of Holocene deltaic deposits. In northern Barataria Basin, regional subsidence variations are relatively low, ranging from -2 to -4 mmyr-1. This area is characterized by the oldest

deposits from the St. Bernard deltaic complex, and sediment texture is coarse and more consolidated than finer-grained, more recent deposits in the southern basin. Further, the northeastern portion of Barataria Basin has relatively thin Holocene deposits (i.e., shallow Pleistocene). The northern half of the Basin also contains multiple overlapping delta lobes that may contribute to the stability of these Holocene deltaic deposits. Greatest subsidence rates were recorded in the southern portion of the basin where Holocene sediment thickness is greatest, deltaic sediment is youngest, and subsurface sediment composition is primarily fine-grained; velocities ranged from -5 to -7 mmyr-1. Mid-basin subsidence rates ranged from -4 to -5 mm yr-1, reflecting a transition in subsurface geologic characteristics between northern and southern areas. These data indicate that subsidence rate ranges used in the 2017 Master Plan for Barataria Basin can be refined from -2 to -20 mm yr-1 to -2 to -7 mmyr-1 (Applied Coastal Research and Engineering, 2018).

METHODS FOR DETERMINING SAMPLE SIZE

The proceeding sections on the development of a sampling design are based on extensive review of the monitoring and statistical literature that largely focuses on the development of new monitoring programs. For SWAMP, there was a need to not only establish new monitoring, but also leverage data collection efforts through existing monitoring programs and integrate the monitoring across different spatial scales of interest. Although the plan identifies sites where existing monitoring takes place, the logistics and feasibility of utilizing these sites for SWAMP has yet to be considered. As a result, the sampling design methodologies seek to achieve statistical robustness irrespective of whether existing sites can be used in the SWAMP design.

Sample sizes for the natural system's monitoring variables were estimated using two approaches: analytical and expert knowledge. The analytical approach was used for variables in which the objective focused on monitoring status and trends and where data existed to conduct the analyses, either from research studies or existing monitoring programs. This included variables from water quality and biotic integrity categories. The expert knowledge approach was required for those variables predominantly required for planning models, whose objective was focused on conducting site-specific measurements rather than regional inferences, or where data were unavailable to conduct a power analysis. This included variables from the hydrology and physical terrain categories.

Power Analysis

In order to ensure that available resources are utilized efficiently and effectively, the development of a monitoring plan typically requires the evaluation of optimal survey designs and the evaluation of statistical power when statistical inferences are of interest (Field et al., 2005). The power of a statistical test, or the probability of detecting a significant difference when a difference actually exists, is a function of the significance level, sample size, variance, and effect size (i.e., minimum detectable difference; Zar, 2010). Although power and significance levels vary among applications and may be subjectively applied, they are useful in providing guidance for the amount of effort required to detect change. For instance, if a power analysis determines that an impractically large sample size is necessary to detect some desired minimum difference, it may be concluded that the time, effort, and expense to perform the monitoring is too high or an alternative metric may be preferable. Alternatively, if the sample size is already set through an established monitoring program, a power analysis can be carried out to calculate the minimum difference that is detectable given that sample size. This report evaluates both perspectives to determine the minimum detectable difference of existing monitoring programs given their current sample sizes and the effect of increasing sample sizes on the minimum detectable difference.

The power of a statistical test has these typical properties:

- power increases as the true population deviates from the null hypothesis (i.e., as larger changes occur),
- power increases as significance level (α) increases, and
- power increases when variability decreases (Urquhart et al., 1998).

Although the ability to detect trends is sensitive to the variability in the metric of interest, trend detection is still possible even with the presence of substantial variation (Urquhart et al., 1998). Environmental datasets generally have substantial variation associated with them, but the variance can often be broken down into key components: (1) site-to-site variation in the magnitude of the metric (i.e., site variance), (2) year-to-year variation expressed by all sites together (i.e., year variance), (3) average independent year-to-year variation at each site (i.e., interaction site*year variance), and (4) residual variance (i.e., variation not covered by site, year, and interaction (Larsen et al., 2004, 2001; Urquhart et al., 1998). The ability to detect trends within a network of sites is most sensitive to year-to-year and residual variances (Larsen et al., 2001). Site-to-site variance can be controlled by adding covariates that characterize the fundamental differences among sites (e.g., habitat types); year-to-year variance can only be controlled by either identifying covariant forcing factors (e.g., annual weather patterns such as wet or dry years) or extending the monitoring time frame; adding sites to a monitoring network only affects the interaction and residual variances; and more frequent sampling of sites within a year only influences residual variance (Larsen et al., 2004). A list of other common sources of higher residual variances and potential remedies are provided in Table 13.

Table 13. Common sources of variability in natural resources surveys with potential remedies (adapted from Reynolds, 2012).

SOURCE	DESCRIPTION	POTENTIAL REMEDY
Vague objectives	Failure to identify specific information and information quality required.	Thorough planning with peer review.
Frame errors	Differences between resource's spatial domain and the spatial domain targeted for monitoring.	Explicit documentation and assessment prior to sample selection.
Measurement bias and sampling variation	Changes in the sample unit values during measurement process; variation resulting from measuring only a subset of the sample frame (i.e., spatial domain).	Multiple measurements per site and/or increase number of sites; apply probabilistic site selection methods; use analysis that accounts for variation attributable to covariates.
Observer errors	Flawed protocols or bias between observers.	Tested and documented protocols; improve training and field guides; QA/QC processes.
Non-response or availability bias	Inaccessible sampling units.	Increase participation by landowners controlling access; modify sampling frame to eliminate inaccessible strata.
Data inaccuracies	Errors in recording, transcription, or management.	Automate data collection where possible; implement or improve QA/QC procedures including "in-field" error checking; develop metadata and archiving; regular re-assessments of data collection procedures; dedicated data management staff and procedures.
Analytical errors	Errors in conducting, interpreting, and presenting results; coding errors.	Peer review of statistical methods; development of analytical protocols; software testing, debugging, and documentation.

The power analysis approach used here was based on a set of assumptions that result in a conservative estimate of sample sizes (Zar, 2010). These assumptions were:

- the data are approximately normally distributed so that a t-test of the change in means is appropriate;
- the variance of the population is constant in time so that the standard deviation used is representative of the true standard deviation in different years;
- the sample sizes are balanced so that the same number of observations are taken each year; and
- the samples are randomly selected (i.e., simple random sampling design) from the study region (with equal probability) and there is no or little correlation among data points from one year to the next.

The last assumption potentially leads to estimated sample sizes that are larger than required because the correlation between observations taken repeatedly at a site influences the standard error of the estimator of change. Positive correlations decrease the standard error of the mean and larger positive correlations decrease the standard error more than smaller positive correlations. Although simulations have been used as an alternative power analysis approach when more complex sampling designs are of interest, it is critical that the assumed model used to generate the simulation reflects the complexities

of the population and proposed sampling design, or else estimated means and standard errors may not reflect the true population (Melwani et al., 2006). However, given the large number of variables and objectives, the simulation approach was not practical and it was deemed more efficient to proceed with the power analysis as described below, under the assumption of simple random sampling. As a result, the results provided are considered conservative (i.e., there may be more samples than are actually needed to observe the change identified).

The power analysis approach was conducted on several of the water quality and biotic integrity variables listed in Table 2 and Table 3 to determine the sample size required to observe a given change (as a percentage) in the metric means over time (a given number of years) or in the means between factors (e.g., wetland types). Since power analyses are based on many assumptions, as described above, the resulting sample sizes are considered estimates and should not be construed as precise numbers. Thus, by conducting the analysis on several different variables within the water quality and biotic integrity categories, the collective results can be used to develop an appropriate sample size range for groups of variables. Although many of the variables may be represented by more than one response metric (e.g., biomass versus density, below ground versus aboveground biomass), it was not feasible to conduct the analysis on all possible metrics and it was assumed results from one metric could be used to infer sample size estimates of related variables and metrics (Table 14).

Table 14. Summary of variables for which a power analysis was conducted in the eastern basins (Barataria Basin and Pontchartrain Region).

The water quality data was only used in the power analyses for the western basins. Details on the power analysis for each variable can be found in Appendix II.

MONITORING CATEGORY	MONITORING VARIABLE	METRIC USED IN POWER ANALYSIS
Water Quality	Chlorophyll a	Chlorophyll a concentration
	Dissolved oxygen (DO)	DO concentration
	Nutrient constituents	Total nitrogen and total phosphorus concentrations
	Salinity	Salinity concentration
	Turbidity	None. Sample size inferred from the collective results of the other variables within the water quality category.
	TSS	TSS concentration
Biotic Integrity	Herbaceous wetland vegetation biomass	Aboveground biomass
	Nekton community composition	Catch per unit effort by gear type
	Soil characteristics	Bulk density
	Wetland vegetation community composition	Marsh and swamp floristic quality indices

In order to perform power analyses the following information was required:

- Type I error rate (α) for incorrectly rejecting the null hypothesis of no change between time points or factors;
- Type II error rate (β) for incorrectly failing to reject the null hypothesis when the alternative hypothesis of change is true;
- effect size, here given as the percentage change from the initial or current mean value; and
- standard deviation (σ) of the random variable under study.

Although power analyses are typically conducted to examine the power to detect change, power itself often has very little meaning outside the statistical literature and may not provide enough guidance for making decisions for selecting appropriate sample sizes. Instead, the effect size can be a useful measure in that it associates sample size estimates with actual changes that can be achieved (either reported in units of the metric or as a percentage). As a result, the main focus of the analysis was to examine the relationship between sample sizes and the effect size and also explore sensitivity to changes in spatial scales (i.e., subbasin, basinwide, and coastwide), while holding power constant. To conduct the power analysis, an "exemplary" dataset was created using data from existing monitoring program or research projects. The data acquired are described for each variable in Appendix II.A general linear model (GLM) was fit to each response variable, y, with a fixed effect combination of

covariates, x, that varied for each metric of interest in order to account for site-to-site variance and reduce the residual variance (Appendix II). The fitted model provided an estimate for the mean for each combination of factors, for the grand mean over all factor combinations, and an estimated error variance. In some cases, the variable required transformation—using either natural logarithm or square root—in order to approximate normality and satisfy the assumptions of the GLM. The means estimated by the GLM served as year 0 in the analysis and effect sizes (i.e., 1-36% change) were imposed in increments of 5% on every transformed mean and calculated for 5 continuous years to generate a 6-year time-series (i.e., year 0 plus 5 years of imposed percentage change). This time-series served as the exemplary dataset and each percentage change represents the effect size, or minimum detectable difference, as previously described. The exemplary dataset was then used to estimate sample sizes for detecting differences among factors (e.g., seasons) and for detecting a linear change over time for a particular effect size. Sensitivity of sample size estimates to the length of the time-series was also explored by running the analysis for 2, 4, or 6 contiguous years (annotated as +1, +3, and +5, respectively, in the graphs in Appendix II). SAS v9.3 was used for all analyses.

The final sample size selection was made by creating line graphs showing the relationship between the minimum detectable difference (percentage change) and sample size and visually identifying threshold points in which increasing sample size resulted in minimal gain in change detecting abilities (Figure 8). The sample sizes at the threshold points were then compared to sample sizes required to detect differences among factors in order to make a determination of what could (or couldn't) be detected given a particular sample size. A summary of the recommended sample sizes is presented in the Monitoring Plan and detailed results of the analysis for each variable are presented in Appendix II.

i A random sampling design is required to assure that the estimates of the means and variances are unbiased. In many instances, it was unknown how the original sampling design was implemented and thus the estimated means and variances used may be biased and lead to inaccurate power estimates. However, proceeding with biased estimates does not prohibit the use of the results to inform sampling recommendations.

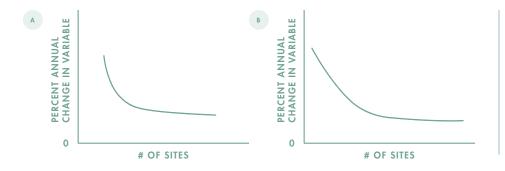


Figure 8. Hypothetical graphs illustrating the concept of threshold points in which a change in the x-axis results in a minimal change in the y-axis.

In panel a, the slope is initially steep such that a small change in the x-axis results in a large change in the y-axis. In panel b, the slope is more gradual. In both cases, the line gradually tapers off, such that any change in the number of sites results in little to no change in change detection ability.

Expert Knowledge

Hydrodynamic and ecological models are used extensively in the coastal protection and restoration planning process and thus expert knowledge is needed to better understand how monitoring sites can help with the modeling efforts. Model predictions are currently assessed with a computer-based decision support tool to make informed management decisions in the selection of restoration and protection projects (Groves & Sharon, 2013). Given the heavy reliance on predictive models for coastal planning, model improvement was a primary focus for the 2017 Coastal Master Plan (Coastal Protection and Restoration Authority, 2014). The development of SWAMP can support model improvement by providing data that can be used for parameterizations, calibration, and validation. However, there are many aspects to be considered when designing and implementing monitoring networks to support numerical modeling efforts, from reducing variances to improving predictions. For example, data limitations have previously been shown to contribute to large systematic and random errors in hydrological modeling (Habib et al., 2007). Meselhe and Rodrigue (2013) also identified general sources of uncertainties in model predictions:

- outdated, insufficient, inaccurate, or unrepresentative input data (bathymetry, topography, freshwater inflow volumes, sediment load, constituents load, etc.);
- poor or incomplete knowledge of the pertinent physical processes represented in the predictive models;
- approximations and numerical assumptions in the numerical schemes; and
- imperfect characterization of numerical and physical variables in the formulations utilized in the models.

Data limitations and needs were also frequently cited in the 2012 and 2017 Coastal Master Plan and examples include:

- boundary conditions and physical processes of flow and suspended sediment exchange; poor spatial coverage (CPRA, 2012 - Appendix D1, CPRA, 2017 - Appendix C5);
- influence of wetland plant growth and belowground processes on organic matter contributions to vertical accretion (CPRA, 2012 - Appendix D2, CPRA, 2017 – Appendix C5);
- grazing, turbidity, and soil type to parameterize the response of plant species to these factors (CPRA, 2012 Appendix D4); and
- role of nutrients influencing the rates of vegetation growth, competition among species, and distribution of plants on the landscape (CPRA, 2017 Appendix C5).

Monitoring optimization methods have typically been employed to improve predictions or estimations of a single variable for a single model (e.g., salinity predictions in Barataria Basin (Habib et al., 2007); contaminant concentrations in groundwater (Zhang et al., 2005)). Optimizing each and every planning model in coastal Louisiana for each variable identified was not practical. Instead, three general modeling needs, spatial coverage, boundary conditions, and system exchange points, applicable to basinwide modeling efforts, were identified from: 1) a review of the data limitations articulated in the 2012 Coastal Master Plan; 2) a review of responses collected in a modeling survey in coastal Louisiana (Steyer et al., 2004); 3) a workshop discussion during the development of the SWAMP Framework (Hijuelos et al., 2013); and, 4) discussions with modelers at the Institute. A future conference among contributors to revisit 1-4 would ensure data collected to date are being used, initial metrics are still ideal, and to plan for future data utilization.

Adequate spatial coverage is particularly important for validation and calibration such that sampling locations for a metric of interest should reflect different types of environments (e.g., shallow vs. deep; open water vs. channels). Improving spatial coverage can also help capture heterogeneity in the system and high gradient variability in order to improve model parameterization. Boundary conditions refer to the characteristics of the model's end points and are specified, not simulated (Adrien, 2004). The exchange points in this context refer to locations where water is conveyed between the marine and estuarine environment through the main tidal passes. Although exchange points occur throughout the coast, the tidal passes in the southern extent of the estuary were identified as critical exchange points in the modeling environment. These locations contribute significantly to the flow and exchange of freshwater, nutrients, sediments, and organic material between the Gulf of Mexico and estuaries. The selection of site locations on a coastwide scale was beyond the scope of this report, so the three modeling needs were used to optimize the number and placement of sites in each basin for the following monitoring variables:

- Weather and Climate: precipitation, wind, evapotranspiration
- Hydrology: current velocity, water level, waves
- Physical Terrain: bathymetry, land area, surface elevation

In some instances, modeling needs were used in conjunction with the power analysis to develop a recommendation on sample sizes and/or site locations. A summary of the recommended sample sizes and locations is presented in the Monitoring Plan and detailed justifications on sample sizes and site locations are provided for each variable in Appendix II.

METHODS FOR DETERMINING SITE LOCATIONS

Overview

Regional trend detection relies on data obtained from a network of sites that represents the target population of interest (Urquhart et al., 1998). Selecting site locations can be performed using probability-based or nonprobability-based sampling designs. Probability-based sampling designs are generally those that involve some stochastic component (e.g., random draws, random starting point) and are often employed, as they result in unbiased and defensible parameter estimates (McDonald, 2012). Those that lack a stochastic component are often selected using professional judgment or located haphazardly and may contain an underlying bias. Inferences cannot be made with any statistical basis beyond the selected location with nonprobability-based methods (McDonald, 2012). As a result, probability-based approaches are recommended for assessment of ecological data.

Although several existing monitoring programs are well established in coastal Louisiana, their sample designs vary, and in some instances, there is little to no documentation as to how sites were originally selected. For the implementation of SWAMP, there will be a need to identify new site locations for monitoring of data that do not exist in any of the programs or site locations where there are an insufficient number of sites to detect change or meet the modeling needs previously identified. Typically, for a single parameter of interest, simple random sampling is an appropriate choice for estimating sample size when there is a lack of sufficient information available to identify appropriate strataii (McDonald, 2012). Alternatively, if information is available to identify strata, stratified random sampling with simple random samples within each stratum is a common approach as it should yield an estimator (in this case as the percentage change in time) with a smaller standard error. However, for multiple variables, choice of strata boundaries is complicated by the competing interests in minimizing variability of values for many different variables within each stratum. Although numerous other probability-based sampling designs exist in the literature (Dixon & Chiswell, 1996; McDonald, 2012 and references therein), a design was needed for coastal Louisiana that included the following properties and would:

- allow optimization of the placement of sampling locations for estimations of more than one variable and numerous objectives;
- satisfy numerical modeling needs including spatial coverage, boundary conditions, and exchange points;
- achieve spatial balance across a large spatial scale (i.e., reduce the amount of "clustering" of site locations in one geographic area);
- be able to nest data collected at the basin scale to the coastwide scale; and
- accommodate changes in the number of sampling locations (e.g., removal or addition of sites given changes in funding, constrained physical access to selected sites).

In order to meet the needs for coastal Louisiana outlined above, the Generalized Random Tessellation Stratified (GRTS) approach was chosen. GRTS produces a spatially balanced probability sample that works well with finite, linear, and areal resources with patterned or periodic responses (Stevens & Olsen, 2004). The GRTS design was developed as part of the U.S. Environmental Protection Agency (USEPA) Environmental Monitoring and Assessment Program (EMAP) and is currently used for the USEPA National Coastal Condition Assessment (USEPA, 2009), Minnesota Status and Trends Program (Minnesota Pollution Control Agency, 2006), Comprehensive Everglades Restoration Plan landscape monitoring (Philippi, 2005), California Status and Trends Program (Lackey & Stein, 2013), and many others. The GRTS design is often used in conjunction with a rotating panel design. A rotating panel design is a sampling strategy in which each panel contains a different collection of monitoring sites and the total number of sites is equal among panels. In year one of monitoring, a single panel of sites is visited according to the sampling frequency for the variable of interest (e.g., monthly, quarterly). The following year, a new panel of sites is visited and the pattern is repeated for a predetermined number of years (in this case, 3 years). Starting in year 4, the pattern recommences beginning with the panel from year one. The benefits of a rotating panel design relative to a design in which sites are visited each year are increased spatial coverage, improved estimation of status (i.e., size of the response), and reduced inadvertent impacts on the site itself, while still providing the ability to detect trends (Perles et al., 2014; Urquhart, 2012; Urquhart & Kincaid, 1999). The drawback of a rotating panel design is that the implementation of the design requires careful tracking to ensure the correct panel is sampled each year. Further, it may not be practical for sites in which permanent structures must be installed. Although the power to detect trends is marginally higher in "always revisit" designs in which sites are visited each year, always revisit designs have shown to result in less precise estimates of status and potential impacts to the site itself (Urquhart, 2012).

The GRTS design has been compared to other commonly used designs such as systematic sampling, simple random sample, and stratified random sample. Simulation studies suggest that the GRTS design significantly and consistently reduces sample variance, increases power to detect change, and reduces the necessary sample size (Lackey & Stein, 2013). The benefits of GRTS are as follows:

- 1. accommodates varying spatial sampling intensity,
- 2. spreads the sample points evenly and regularly over the domain,
- 3. allows augmentation of the sample after-the-fact, while maintaining spatial balance, and
- 4. accommodates varying population spatial density for finite and linear populations.

The methodology behind the GRTS design is less straightforward than many of the other commonly used designs and may require training to ensure the design is properly implemented. Further, each of the existing monitoring programs currently utilize a different design or use a different strata to select sites, thus some modifications to the GRTS design upon implementation will be needed in order to leverage existing sites.

ii Optimal identification of strata occurs when every element (e.g., parameter value at a station location) within a stratum is more similar to the other elements in that stratum than to any element in any other stratum. This method of stratum identification decreases the within stratum variance for every stratum used in the sampling design.

Methodology

The GRTS design is based on a hierarchical, square grid placed over the target area. The grid is then subdivided until there is no more than one potential individual sample per grid cell. The hierarchical randomization process then maps the twodimensional grid onto a one-dimensional line and a systematic sample is taken along the line. This results in samples that are in hierarchical random order and when mapped back on to two-dimensional space, exhibit a random distance between adjacent points. The GRTS design also allows for the use of a neighborhood variance estimator instead of the variance estimators that assume independent random sampling (IRS). The use of the neighborhood variance estimator can result in considerable reductions in the estimation of variance, e.g., 22-58% reductions (Lackey and Stein 2013), and as described above, smaller variances result in a higher power of the statistical test. Additional detail on the underlying algorithms and statistical properties of GRTS are described in Kincaid and Olsen (2013), Larsen et al. (2008), and Stevens and Olsen (2004).

GRTS was implemented by generating a coastwide master sample for water (Figure 10) using the spsurvey library in R v3.1.2 (Kincaid & Olsen, 2013). The master sample is a very large sample from which subsamples can be drawn to meet specific monitoring needs (Larsen et al., 2008). The subsamples in this context are the sample sizes recommended for SWAMP. Subsamples could also be project-specific monitoring or research study sites. In order to integrate different scales of monitoring, the master sample should be generated for the largest scale of analysis. The master sample can then be subset for any number of geographic domains, while remaining "nested" within the largest scale (e.g., coastwide; Figure 9). For this reason, the master sample was generated for the SWAMP coastwide boundary and subset using the basins' boundary files for development of basinwide monitoring plans. The master sample could also be utilized for project-specific monitoring, using the project geographic boundary, in order to integrate project-specific monitoring with SWAMP. Critical to the use of the master sample is that sites must be selected for the order in which they were generated in spsurvey. If field inspection ultimately results in a site being unsuitable for monitoring, the next site in the ordered list must be used in order to maintain spatial balance of the GRTS design.

The master sample is most useful when it is generated using a detailed geographic layer representative of the area in which sampling will take place. The best available data to generate the geographic layer for the master sample was a wetland classification Geographic Information Systems (GIS) shapefile derived from satellite data (Couvillion et al., 2013) and the National Hydrography Dataset (NHD) geodatabase (details on the NHD can be found in Appendix II under the water quality variables). The NHD classification contains areal (e.g., bays) and linear (e.g. streams) features. Features within the SWAMP coastwide boundary classified as 'BayInlet', "SeaOcean", and "LakePond" were selected from the NHD dataset for generating the master sample. Next, areas less than 1 meter deep were identified using calibrated model output of water depth from the 2017 Master Plan Integrated Compartment Model (E. White, personal communication, June 2015) and removed as these features would be too shallow for the water-based sampling proposed in this plan. The master sample size was then determined by calculating the area of water within the coastwide boundary. The total area of water was then divided by 1 km2 (i.e., 1 x 1 km grid), which resulted in 15,524 sites (Figure 10). The ordered list of sites generated in these master samples was then subset at the basin level (e.g., for Barataria Basin) to select site locations based on the sample sizes recommended in the Monitoring Plan below. Master samples were also generated for wetlands and offshore waters in the event that these may be useful in project-specific monitoring, rapid response programs, or individual research studies. They were not needed for SWAMP implementation in the basins as the wetland-based monitoring (e.g, biomass) could be conducted at existing CRMS locations, while offshore monitoring of waves could also utilize existing platforms. Thus, the selection of new sites for these land-based or offshore monitoring variables was not needed. The master sample was only used for the selection of new sites. If existing sites were available for incorporation into SWAMP, only the remaining sites needed to meet the recommended total sample size were selected from the master sample. If existing sites were available, they could be excluded from the master sample to avoid overlapping sites. Additionally, there may be certain areas where new sample sites should not be placed either because of private land owner restrictions or other situations. For either of these scenarios, GIS selection tools are used to exclude locations where existing stations are or areas that are not of interest. For example, existing USGS stations were preferred locations for adding new water

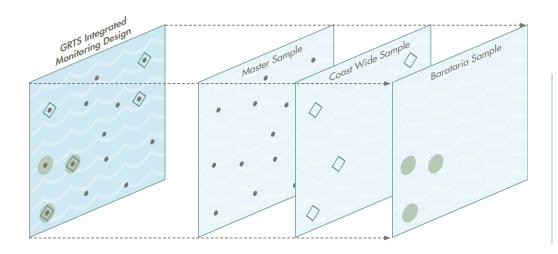


Figure 9. Hypothetical space illustrating the concept of the GRTS integrated monitoring design in which a master sample is generated to select sites coastwide and basinwide.

Note that the coast-wide sites located within the Barataria domain are also Barataria sites, but not all Barataria sites are needed for the coast-wide network.

quality sampling instrumentation for discrete and continuous sampling. Using the point shapefile of the USGS gage location and the point shapefile of the master sample, the master samples within a 1km distance of the existing USGS stations were not selected as potential sites. The master sample can easily be subset to focus on site selection in specific areas of interest.

For the western basins, a coastal boundary was applied to focus the natural system design near the coastal zone. Most of the natural system prioritized variables are within this boundary except for the LDWF nekton sampling.

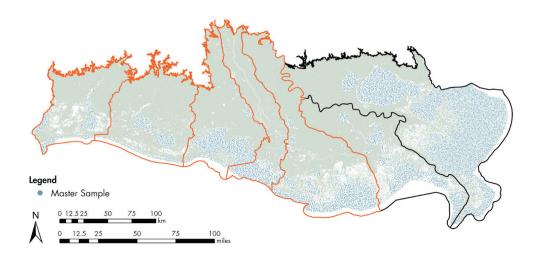
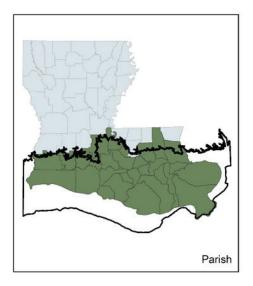


Figure 10. Master sample generated on the coastwide scale for water-based monitoring efforts.

SWAMP boundary is outlined in black and basinwide boundaries are outlined in orange.

HUMAN SYSTEM SAMPLING DESIGN

METHODS FOR DETERMINING FUNCTIONAL COMMUNITIES

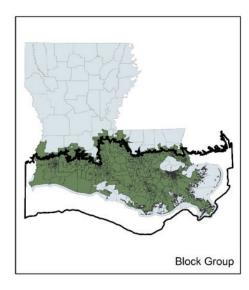
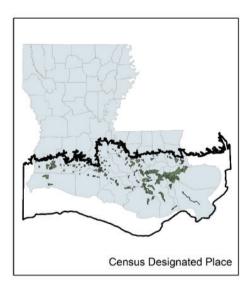
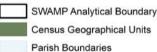

The human system monitoring plan is a framework to assess socioeconomic change and trends across coastal Louisiana and within specific hydrologic basins using a broad suite of social and economic variables derived from both primary and secondary data sources. Monitoring of the human system first requires defining the appropriate units of analysis, which can then be aggregated across a larger spatial extent to delineate functional community areas (e.g., local communities and parishes, and larger regional groupings such as economic or ecological impact areas). Within these functional communities, primary data collection can take place and/or secondary indicator data can be used to conduct statistical analyses of demographic change. To operationalize this, it is necessary to first define specific functional communities and then establish a viable method to delineate boundaries for the functional communities. The U.S. Forest Service noted the following challenges to establishing this type of natural systembased socioeconomic monitoring plan, most of which revolve around determining and defining the appropriate unit of analysis and delineating the spatial extent of the study communities:

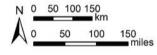
- Determining an appropriate unit of analysis for monitoring;
- Defining and delineating "community" as a unit of analysis;
- Selecting sample communities and generalizing from the sample;
- Identifying relevant indicators for which community-scale data are available;
- · Investing time and money for primary data collection; and
- Distinguishing the effects of management policy on communities from the effects of other social, economic, and ecological processes (Charnley & Stuart, 2006).

These functional community boundaries can be adapted to incorporate a number of specific units of analysis, such as census block groups and ZIP codes, for the SWAMP human system monitoring plan. Census and ACS data can be almost infinitely scaled (Phillips, 2003), allowing researchers to aggregate any number of units of analysis (e.g. census blocks and block groups) to a larger spatial extent or functional community area (e.g. local communities and parishes, and larger regional groupings such as economic or ecological impact areas). The same variables and objectives often can, and should, be applied to each aggregated unit of analysis at the coast-wide and basinwide scale.

Four different geopolitical units of analysis can be adapted and used to address the objectives of the coastwide human system monitoring plan: parishes, census block groups, ZIP code areas, and census designated places (Figure 11). Block groups are the smallest inclusive unit of analysis for which all summary statistics are reported. Block group delineations do not, however, reflect meaningful community boundaries. For this reason, the coastwide human system monitoring plan aggregates existing block groups within larger and more socially meaningful functional community boundaries that can be analyzed to address many of the specific fundamental objectives of the plan (Doak & Kusel, 1996). General conceptualizations of community range from local geographic communities where people live, work, and interact in a common geographical area, such as a town or neighborhood, to communities of interest and

occupational communities, where people are united by shared identification and interactions within an occupation. For this research, a number of functional communities will be derived that address the various socioeconomic monitoring objectives of the human system monitoring plan, using both established geographic population centers and occupational community groupings. The coastwide human system monitoring plan identifies changes within each established population center in the study area as well as within targeted natural resource dependent occupational communities. This also includes monitoring of the amount of natural resources extracted from the environment, specifically through fisheries and agriculture. Other functional community groupings monitored by the plan include populations sharing similar geographic vulnerabilities and environmental protection levels.


Figure 11. U.S. Census Bureau geographical units in coastal Louisiana.

Legend

Data Source: U.S. Census Bureau 2010

Geographic Communities

In general, parishes and towns do not coincide with communities for many types of social and environmental status and trend assessments. Moreover, analyses of those factors driving any observed socioeconomic changes often require a specificity and detail largely unobtainable with parish level data, particularly with large and heterogeneous parishes (Kusel, 2001). While parish or regional data may be too broad to effectively analyze socioeconomic change, administratively derived community boundaries may be too narrow. Functional community areas are typically not confined by political, administrative, or statistical boundaries (Parisi et al., 2003). Residents of small towns, for example, may commute to work or travel regularly to other towns for shopping, entertainment, socializing, schools, churches, public meetings, and other social functions (Blahna et al., 2003). In addition, many residents reside outside administratively established community boundaries, yet rely extensively on the services and organizational infrastructure of that community.

To understand socioeconomic change in coastal communities, analysis must focus on and isolate functional communities. One objective of the coastwide human system monitoring plan is to identify changes in population, housing, and economic characteristics within local population centers (Table 6 through Table 11). Population-based functional communities are based on proximity to compact central areas such as cities, towns, villages, and other concentrated population centers where residents are able to meet their daily needs (Taquino et al., 2002). The community boundary should include outlying population areas proximate to these places. Sociologists have often identified community areas by aggregating census units within a 5-10-mile radius around the geographic center of an established place, such as a city, town, village, or other census designated place. Other research suggests that distance itself has little socioeconomic value and that the geographical extent of analysis should be delineated based on travel time instead. Such a measure more accurately delineates the community areas where people are most likely to interact to meet daily needs (Parisi et al., 2003). This is particularly relevant in coastal Louisiana where residents are generally crowded together on narrow strips of high ground surrounded by broad expanses of uninhabited wetlands and large

open water areas. Functional community boundaries in coastal Louisiana are best approximated by aggregating those census block groups around a U.S. Census Bureau designated compact central area based upon travel time. Adjusting for road variability, the traditional 5- to 10-mile aggregation distance translates into an average daily travel time of 10 minutes (Parisi et al., 2003; Taquino et al., 2002).

For this analysis, the aggregation procedure began by identifying both incorporated and unincorporated places within the SWAMP study area. Incorporated places are legally recognized political units with both social and government structure based upon their population size (Taquino et al., 2002). Unincorporated places are identified by the U.S. Census Bureau as census designated places (CDPs). CDPs are settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The Census Bureau draws CDP boundaries in coordination with local officials and these generally coincide with the boundary of an adjacent incorporated place.

The incorporated and unincorporated place boundaries were the basis for the travel time-based functional community boundaries. The Network Analyst function in the GIS software package ArcGIS v10.2 effectively models travel time-based distances using transportation network data and the established place boundaries (Wang, 2006). A 10-minute drive time buffer with its origin at the population weighted centroid of the community was derived (Figure 12).

Once the community boundary was delimited, the census block groups contained within that boundary were aggregated to allow for further analysis of socio-economic change within the functional community. In many rural census block groups, a large proportion of the total area consists of unpopulated wetlands. Therefore, the aggregation of census block groups should be based on the population-weighted centroid rather than the geographic centroid of the block group. All census block groups whose population-weighted centroid fell within the functional community boundary were included as part of the 10-minute community. Census block groups falling outside of the 10-minute road network boundary were excluded from the geographic community areas.

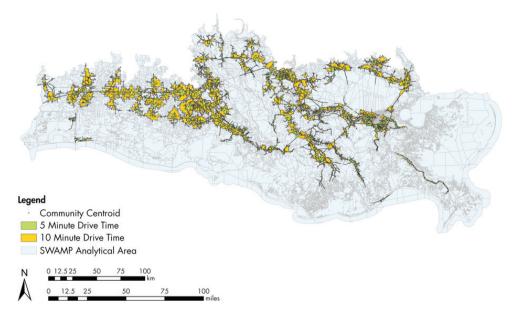


Figure 12. Community boundaries based on 10 minutes' travel time around central places.

Occupational Communities

Changing environmental conditions and policy actions taken to adapt to these conditions have the potential to impact certain communities more than others. In particular, populations that participate in - and depend upon - renewable natural resource extraction activities could be impacted dramatically by changes to the ecosystem (Laska et al., 2005). To effectively monitor socioeconomic change in coastal communities, it is vital to identify those elements that make these communities important, such as the significance of the area for supporting both the population and natural resources such as forests, fisheries, and tourism (Malone & La Rovere, 2005). Changes in the socioeconomic conditions of natural resource-dependent communities are essential components of any coastwide human system monitoring plan. County (parish) data tend to present too broad and diverse an area to adequately assess the levels of socioeconomic change within most natural resource-dependent communities. The larger the aggregation, the less likely the variables - whether they are median income, poverty, or unemployment - will have a relation to community resource activities (Kusel, 2001). As part of coastwide human system monitoring plan, occupational communities are delineated using geostatistical methods to identify significant clusters of coastal residents who self-identify in the U.S. Census as being employed in natural resources extractive industries. Many of the same variables used to measure change in local population centers (Table 6 through Table 11) will be used within the natural resource dependent occupational communities. Because the U.S. Census is self-reported and recognizing that commercial fishing is often a source of secondary or side income, the full impact of commercial fishing on communities may be underreported. The SWAMP monitoring plan will account for this through primary data collection, Other targeted variables specifically related to ecosystem dependence (Table 9) are also monitored within these occupational communities.

Within the U.S. Census and the ACS, there is an important distinction between one's occupational classification and one's employment industry classification. According to the Bureau of Labor Statistics, the occupational classification reflects the type of job or work that the person does, while the industry classification reflects the business activity of their employer or company. For

example, a clerical worker employed by a fishery would be classified as having an "Office and Administrative Support" occupation within an "Agriculture, Forestry, Fishing, and Hunting" industry. To capture the full impact of natural resource-related industries on a community, enhanced occupational boundaries should be determined using industry data reported by the census.

To establish these functional occupational community boundaries, it is necessary to locate clusters of census block groups with significantly high levels of natural resource employment relative to the surrounding block groups. The Spatial Statistics Tools in ArcGIS can perform a number of global and local tests for spatial autocorrelation. These tests determine the degree of clustering in the study area and determine where this clustering occurs and where statistical outliers are located. The Global Moran's I tool computes a single summary value (a z-score), which is used to describe the degree of spatial concentration or dispersion for the natural resource extraction employment within the study area. Comparing this summary value year by year indicates whether or not natural resource extraction is becoming more dispersed or more concentrated, overall (Scott & Janikas, 2010). Hot Spot Analysis (Getis-Ord Gi*) and Cluster and Outlier Analysis (Anselin Local Morans I) tools were used to determine regional clusters of high natural resource employment. The Getis-Ord Gi* statistic was used to identify local hotspots and clusters of natural resource-dependent census block groups (Getis & Ord, 1992; Ord & Getis, 1995). The Gi* statistic determines the spatial dependence between an observation and neighboring observations within a user-specified distance threshold. Gi* values are given as standard normal variances with an associated probability from the z-score distribution (Kracalik et al., 2012). Occupational community boundaries were established using the all census block groups with a Getis-Ord Gi* statistic equivalent to the 95% confidence interval (Figure 13).

Tests to detect the presence and location of spatial outliers, i.e., census block groups with high levels of natural resource employment not located within the derived occupational community boundaries, were also conducted. The presence of such outliers may be an indication of spatial instability at that location (Anselin, 1995). The Anselin Local Moran's I statistic was used to test for the presence of spatial outliers. As with the Getis-Ord Gi* statistic, the Local Moran's I values are given as standard normal variances. A low negative z-score (e.g., < -1.96) for a feature indicates a statistically significant (0.05 level) spatial outlier.

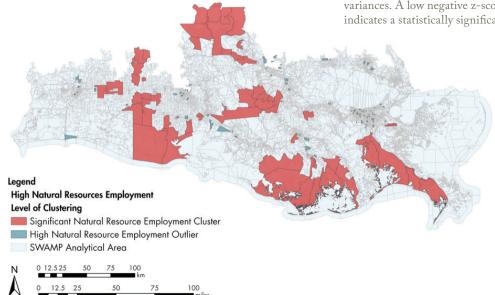


Figure 13. Clusters of natural resource dependent communities.

Community boundaries based on significant clustering of census block groups with high natural resource-based employment.

Physical Risk and Vulnerable Communities

FLOOD ZONES

To effectively gauge the vulnerability of coastal populations to coastal hazards, the coastwide human system monitoring plan must track changes in the potential exposure of communities and the critical infrastructure they depend upon to coastal inundation and flood risk (Table 10). Whereas previous community delineation methods required derivation of analysis areas, the hazards and risk reduction analysis units can be derived from specific landscape features and hazard zones. The Federal Emergency Management Agency (FEMA), for example, uses a series of flood insurance rate maps (FIRMs) to determine whether or not a home is located in a 100-year flood zone, defined as an area with a 1% or greater chance of flooding in any given year. FEMA defines flooding as having an average inundation depth of one foot or greater. To effectively monitor the degree of exposure to flood risk in coastal Louisiana, the human system monitoring plan will estimate changes in the percentage of households located in the 100-year floodplain and FEMA v-zones (i.e., coastal areas subject to hazards associated with storm-induced waves) at the census block group level according to the most up to date FIRMs available. Any population-weighted block group centroids that fall within this special flood hazard area should be included as part of the community of analysis.

STRUCTURAL AND NONSTRUCTURAL PROTECTION

One objective of the coastwide human system monitoring plan is to determine how management decisions and coastal dynamics influence community risk and how resistant communities are to risk. Within coastal Louisiana, a combination of restoration, nonstructural, and targeted structural measures will provide increased flood protection for coastal communities and the strategic assets they rely upon (CPRA (Coastal Protection and Restoration Authority), 2012; Peyronnin et al., 2013). Structural projects for risk reduction include levees and floodgates. Sediment diversions and hydrologic restoration projects also utilize structural components, although these are employed primarily for coastal restoration purposes. Nonstructural projects examined as part of SWAMP include elevation, flood proofing, retrofitting buildings with individual mitigation measures, and voluntary acquisition of residential properties in areas where projected flood depths make elevation or floodproofing infeasible.

To monitor the protection of residential properties in coastal Louisiana, the coastwide plan will estimate changes in the percentage of households within structural protection zones, defined analytically as areas within levee polders and areas currently receiving 100- or 500-year protection according to CPRA (Table 10). Any population-weighted block group centroids that fall within these areas should be included as part of this functional community. In order to monitor change within the most physically vulnerable locations, SWAMP will also identify those census block groups located atop high ground and natural levees and those located in low-lying areas away from the natural levees. The plan will also monitor the total number of residential structures receiving nonstructural protection. These raw counts will be aggregated to the census block group level to allow for

an effective comparison with other socioeconomic variables such as property values, levels of home ownership, and residential occupancy rates.

Another objective of the coast wide human system monitoring plan is to determine the number of essential facilities and critical infrastructure currently protected by structural and nonstructural projects (Table 11). Louisiana has a complex system of built infrastructure, as well as public utilities, in immediate proximity to the coast and highly vulnerable to the threat of tropical weather events (Laska et al., 2005). The protection of critical infrastructure is vital to the continued viability of coastal communities. The monitoring plan will utilize data obtained from the FEMA Hazus Multi-Hazard (MH) model to obtain residential and nonresidential structure counts at the census block level. FEMA Hazus- MH also provides locational data for critical infrastructure, which should also be aggregated to the census block level. All census blocks with their geographic centroid within the structural protection zones will be aggregated to develop this functional community boundary.

Natural Resource Extraction Study Areas

To effectively monitor change in coastal communities, SWAMP will identify changes in natural resource extraction, specifically fisheries landings and agricultural yields. For this analysis, the delimited locations where these resources are extracted are treated as functional communities because they are a function of human activities, though directly influenced by natural system factors. Unlike the functional communities derived previously (geographic, occupational, and physically vulnerable), however, the measures of change in natural resource extraction sites will be based purely on resource yield.

FISHERIES LANDINGS

Annual trip ticket data will be analyzed at both the coastwide and basinwide scales as part of the coast-wide plan. Since 1999, commercial fishermen and licensed commercial seafood dealers have been required to report the volume and dockside value of commercial seafood landed in Louisiana as part of the Louisiana trip ticket program. Commercial seafood dealers and commercial fishermen must complete a record of the quantity and dockside value of the seafood exchanged at the "point of first sale" (Bharadwaj et al., 2012; Caffey et al., 2006). This individual trip information provides area-specific catch data that will improve the accuracy of stock assessments. Analyzed over time, individual trip information will also provide fishery managers with information on the impact of environmental changes and catastrophic events on the fishery (Louisiana Department of Wildlife and Fisheries, 2010). Variables included in the trip ticket report of each transaction include the identification of the species, the volume landed, the amount paid to the commercial fisherman, and the area fished. The ecosystem dependency portion of the coastwide human system monitoring plan focuses on monitoring the impacts of geophysical processes on the fisheries themselves (Table 9). Therefore, the coast-wide plan will focus primarily on the areas fished as opposed to the ports where the fish were landed. For the coast-wide analysis, basin-level trip ticket data will be utilized while subbasin data will be required to conduct the basin-level analyses.

AGRICULTURAL COUNTS

Monitoring changes in agricultural yield (Table 9) is problematic, given the geographic scale of the data available. Data are most widely available at the parish level, which, while useful for a coastwide assessment of agricultural shifts, does not lend itself to basin or subbasin level analyses. The LSU AgCenter's Department of Agricultural Economics and Agribusiness publishes an annual report that provides acreage, yield, and price data by parish for every commercially grown commodity in the state. This report, Louisiana Summary: Agriculture and Natural Resources, is a cooperative effort between parish and state Sea Grant Extension personnel. Because these data are published annually, they are effective in conducting agricultural damage assessments (Guidry & Pruitt, 2012). As with the LSU AgCenter data, the U.S. Department of Agriculture National Agricultural Statistics Service (NASS) provides its Census of Agriculture data at the parish level. These data are on a 5-year release schedule, although NASS began providing farm counts at the ZIP code level with its 5-year Census release beginning in 2007. While these data are not as extensive as those released by the LSU AgCenter, or even the parish-level Census of Agriculture, they can be used to assess changes in the total number and scale of operations at a subparish level.

One final means of monitoring change in agricultural land use patterns in coastal Louisiana involves using satellite imagery to identify shifts in landcover type. Since 1997, NASS has produced an annual crop-specific land cover product called the Cropland Data Layer (CDL). The CDL depicts more than 100 unique crop categories across the United States, and is delivered as a 30-m resolution raster image. The CDL is released annually and is delivered shortly after the growing season concludes (Mueller & Harris, 2013). While the CDL does not measure agricultural yield, it does provide a consistent method of monitoring the acreage of land dedicated to specific crops. Raster math and data analysis techniques within ArcGIS can be used to calculate total cropland acreages within any specified unit of analysis or functional community.

METHODS OF PRIMARY DATA COLLECTION

Study design and population sampling using community-based longitudinal surveying are two of the most important tools to monitor change in human communities. A survey is a research method for collecting information from a selected group of people using standardized questionnaires or interviews. Data from well-designed questionnaires – addressed to limited objectives – always enhance the understanding of community response to social change, whether planned or unintended (Burdge, 1994). A survey of individuals and households would allow researchers to operationalize hypotheses and customize data gathering at the individual level (Jackson et al., 2004). The survey process typically includes:

- determining delivery methods;
- selecting a sample;
- developing a questionnaire;
- pretesting the questionnaire;

- checking the reliability and validity of the questionnaire;
- · administering the survey; and
- analyzing results (Virginia Commonwealth University, 2014).

Environmental economists have long used surveys to gather information about people's preferences, particularly when measuring nonmarket valuation of ecosystem goods and services, where techniques such as the travel cost method, contingent valuation, and choice modeling invariably employ some form of survey instrument (Fleming & Bowden, 2009). For this phase of the human system monitoring plan, community surveys will identify the cultural, traditional, and recreational utilization of ecosystem goods and services within Louisiana's coastal communities (Table 9). The following sections propose a mode of data collection and a methodology to determine sampling locations and to estimate sample sizes. The questionnaire itself would be typically designed, validated, and administered by survey consultants or subject matter experts.

For the ecosystem dependence portion of the human system monitoring plan, a mixed-mode survey methodology is recommended to reduce levels of nonresponse error. An analytical approach was taken to determine the sampling locations and estimate sample sizes for the human system's monitoring variables. Determinations of sampling locations follow similar procedures established previously to monitor change using secondary data sources, aggregating census geographies to correspond with certain functional communities. Sample size estimations are determined based upon a number of factors, both demographic and statistical.

Survey Methods

The use of community surveys ultimately culminates in the collection of primary data. Three general modes of data collection have traditionally been utilized in administering community surveys: face-to-face interviews, telephone interviews, and self-administered questionnaires (Visser et al., 2000). Each method has advantages and disadvantages relative to the other method. Researchers must consider several factors, including cost, characteristics of the population, and the desired response rate. Generally, face-to-face interviews are more expensive than telephone interviews, which are, in turn, usually more expensive than self-administered mail or internet questionnaire surveys of comparable size (Visser et al., 2000).

Land line-based telephone surveys have traditionally provided the most cost-efficient means of surveying individuals and households. During the past decade, however, participation in telephone surveys has declined dramatically due to factors such as the increased use of cellular telephones, growth of call screening technologies, and heightened privacy concerns resulting from increased telemarketing calls (Hu et al., 2011). Mail coverage remains a concern for general public surveys due to the relatively low response rates. It should be noted, however, that mail survey response rates have remained steady despite the large decline experienced for the telephone-based surveys (Dillman et al., 2009). More recently, self-administered email and web-based surveys have emerged as viable options. The comparatively low cost of webbased surveys is advantageous in that it enables large sample sizes and decreased sampling variance (Fleming & Bowden, 2009). The primary data collection portion of the human system monitoring plan uses a mixed-mode survey methodology combining mail and

web-based self-administered questionnaires. The main justification for using multiple modes is to increase response rates in hopes of reducing the potential for nonresponse error.

While the actual design of the questionnaire should be determined by a qualified survey consultant, it should seek a mix of discussion style open-ended questions and more rigid closed questions (Kitchin & Tate, 2013). Open-ended questions are generally more descriptive in nature and, as a result, are more difficult to analyze quantitatively, often requiring some form of content analysis. Closed-ended questions, on the other hand, generate data that can be analyzed quantitatively. By combining descriptive and analytical answers, the questionnaire design will generate both factual and subjective data relating to people and their circumstances, behavior, attitudes, opinions, and beliefs (Kitchin & Tate, 2013).

Determining Sampling Locations

To address the primary data collection needs of the human system monitoring plan, it is necessary to determine the appropriate unit of analysis to sample. The community boundaries developed earlier in this report can be adapted for use in the survey analysis. As with the secondary data analyses, the appropriate units of analysis are variable and their selection is often times driven by specific policy needs. The basic sampling units to identify changes in ecosystem dependency in coastal Louisiana are those occupational communities with significant levels of natural resource employment. The ZIP code should be used as the primary unit of analysis for this portion of the research to allow survey consultants to more effectively target these communities for mail-based questionnaires.

Derivation of ZIP code analysis areas in SWAMP proceeded in two steps. First, cluster analysis was run on the U.S. Census Bureau's ZIP code boundaries, known as Zip Code Tabulation Areas (ZCTAs). The association of the ZCTA with the census blocks allows for detailed demographic analyses of ZIP codelevel data. For SWAMP, cluster analysis was run using natural resource-based employment as the clustering factor, giving a ZIP code-based community boundary. After establishing these ZIP Code cluster boundaries, to assure that all communities with high levels of natural resource employment are sampled in the survey analysis, the boundaries were extended to incorporate any population-weighted block group centroids included in the previously established occupational community boundaries.

Noncontiguous census block groups will be assigned to the appropriate ZIP Code area and included in the analysis. This assures that all census block groups with high levels of natural resource employment are included in the sampling area. If policy needs dictate that specific towns or communities be sampled, the same methods can be utilized to identify ZIP code centroids within the geographic community boundaries derived earlier.

Estimating Sample Size

A survey generally aims to sample a portion of the population that is representative of the population as a whole. To calculate the minimum sample size required for accuracy in estimating proportions, the following decisions must be made:

- decide on a reasonable estimate of key proportions (p) to be measured in the study;
- 2. decide on the degree of accuracy (B) that is desired in the study (e.g.0.01 or 0.05);
- 3. decide on the confidence level (C) you want to use. Usually 95% (which is equal to 1.96);
- 4. determine the size (N) of the population that the sample is supposed to represent; and
- 5. decide on the minimum differences you expect to find statistically significant.

This is expressed algebraically as:

$$n = \frac{(N)(p)(1-p)}{(N-1)(B/C)^2 + (p)(1-p)}$$
[EQUATION 1]

Where:

n = complete sample size

N = size of population

P = proportion expected to answer a certain way (0.5 is most conservative)

B = acceptable level of sampling error (0.05 = \pm 5%)

C = Z statistic associated with confidence interval (1.645 = 90% confidence level; 1.960 = 95% confidence level; 2.576 = 99% confidence level)

When conducting a survey, it is necessary to estimate what the expected response rate will be. The sample size estimated above is the number of completed questionnaires needed to achieve the minimum sample size needed for accuracy. It is necessary to incorporate the expected response rate when deciding how many surveys to send out.

To estimate the number of surveys required to achieve the necessary sample size (n) calculated in Equation A:2, the number of surveys required is calculated from:

Surveys Required =
$$\frac{n}{[(1-U)RR]}$$
(EQUATION 3)

Where:

n = the required sample size

U = the estimated proportion that is not deliverable

RR = the estimated response rate (proportion)

i It should be noted that, while similar, there are differences between ZCTA and U.S. Postal Service (USPS) ZIP codes. The USPS ZIP codes are based upon individual addresses and are stored as point files with no association with individual census blocks or other areal geographical features. The U.S. Census Bureau uses this address data to assign each census block to a specific ZCTA, which is a generalized approximation of the USPS Zip Code extents.

DETECTING CHANGE IN HUMAN SYSTEM DATA

Detecting Change Using Secondary Data

After deriving functional community boundaries, the human system monitoring plan uses statistical analyses of block group level data published by the U.S. Census Bureau to measure demographic change within these functional communities. ACS is the most current population data published by the Census Bureau and the census block group is the finest geographical level at which all data are available.

There are methodological considerations that need to be made when using ACS data. Because the ACS samples just over 53 thousand addresses in Louisiana per year and interviews less than 30 thousand, the Census Bureau needs to combine population or housing data from multiple years to produce reliable numbers for small counties (parishes), neighborhoods, and other local areas (Census Bureau, 2008). Areas with a population of at least 20,000 will be published using three years of pooled data, while smaller areas, such as census tracts and block groups, require 60 months of pooled ACS samples (Starsinic & Tersine, 2007). Because data are pooled across years, rates of change cannot be calculated on an annual basis. In addition, overlapping multiyear periods between different 5-year ACS estimates preclude an easy comparison of these estimates. As a result, comparisons over time can only be made on 5-year ACS estimates without overlapping years (e.g., 2005-2009 and 2010-2014).

All data based on samples, such as ACS and the census long form samples, include a range of uncertainty. The Census Bureau reports the 90% confidence interval and provides margins of error

(MOE) on all ACS estimates. MOE describes the precision of the estimate at a given level of confidence. The confidence level associated with MOE indicates the likelihood that the sample estimate is within a certain distance from the population value. Confidence levels of 90%, 95%, and 99% are commonly used in practice to lessen the risk associated with an incorrect inference. MOE provides a concise measure of the precision of the sample estimate in a table and is easily used to construct confidence intervals and test for statistical significance (Census Bureau, 2008). MOEs published by the Census Bureau can be adapted and used to develop a number of statistics that can be analyzed to detect change between communities and over time. An example of detecting change using ACS data is provided in Appendix II.

Detecting Change Using Primary Data

If multiple surveys are conducted using the same closed-ended questions over time, it is possible to analyze patterns in the data and detect change. To compare two estimates over time, it is necessary to determine whether any observed difference is statistically significant or due to chance. As with the ACS data, the tests for significance of change in survey data use the estimates and their corresponding standard errors. In order to derive the standard error, we must first calculate the margin of error in the sample. Using the sample size and population size of the community, a margin of error is calculated from:

$$B = C \sqrt{\frac{p(1-p)}{n} - \frac{p(1-p)}{N}}$$

(EQUATION 4)

Once the margin of error is known, the standard error can be derived (Appendix II, Equation E:6) and the significance of any observed change can be determined (Appendix II, Equation E:12).

NATURAL SYSTEM MONITORING PLAN

The monitoring plan includes continuous and discrete monitoring of the natural system. In this context, continuous monitoring refers to the collection of data using an automated data recording system that is permanently deployed at a site with a constant and evenly spaced sampling interval (e.g., hourly). Data can be retrieved remotely via cellular or satellite communications (if properly equipped) or by periodically downloading the data from the internal recording system. Discrete monitoring refers to the collection of data using any instrumentation that is temporarily deployed by an observer and then removed at the end of the collection period. Sample intervals are typically longer with discrete monitoring (e.g., monthly) and require an observer to revisit the site to obtain each sample. In some cases, both continuous and discrete measurements are recommended for a given variable. Detailed methodologies and analytical results of the power analysis are provided for each variable in Appendix II. Here, a summary is provided showing recommended site locations and sample sizes (i.e., number of sites), including utilization of existing monitoring programs in coastal basins. The recommendations described herein are based upon the interpretation of the power analysis, discussion with subject matter experts, and guidance from CPRA.

WEATHER AND CLIMATE

Key climatic variables needed for documenting drivers of coastal change and improving planning models' predictions include precipitation, wind, and evapotranspiration. Precipitation is a major component of the hydrologic cycle and influences the quantity of both surface water and groundwater. Excessive precipitation results in increased riverine discharge and potentially increased inundation of riparian zones and wetlands, while drought conditions can lead to anoxic soil conditions (Michener et al., 1997). Winds associated with local weather, winter cold fronts, and tropical cyclones influence coastal water circulation patterns through increasing or decreasing water levels and resuspension and redistribution of particulates (Booth et al., 2000). Winds may also indirectly impact shorelines through wave attack which can lead to erosion and damage to vegetative communities (Tonelli et al., 2010). Because direct measurements of evapotranspiration can be difficult to collect, potential evapotranspiration (PET) is a more typically used metric and is the total amount of liquid water that could be consumed (i.e., the water demand) by regional vegetation and evaporated by solar energy.

Precipitation and winds are measured continuously (hourly to subhourly), while PET is estimated from measurements of solar radiation, temperature, humidity, and land cover. Other variables such as atmospheric pressure (including at sea level), solar radiation, and air temperature are typically packaged with these sensors without substantially adding to costs and can be useful in ancillary investigations of ecosystem processes. Model

predicted datasets, as described in the Building on Existing Monitoring section, are also critical given their large spatial coverage and can be ground-truthed using existing meteorological sites. Maintenance of these existing and proposed discrete meteorological sites can be labor intensive and expensive. Relying on newer technology, such as radar-based precipitation may be a better path forward for the SWAMP design. Data availability and continuity of the existing datasets is currently being coordinated by CPRA to determine their long-term utility. Expert knowledge from a scientist at CPRA provided recommendations for the site locations to monitor precipitation and wind.

CALCASIEU-SABINE

It is recommended that two real-time meteorological sensors be added to the coastal area of Calcasieu-Sabine Basin on either existing platforms or in conjunction with the new water quality or hydrology continuous sites described below (Figure 14, Table 15). The sample size estimate assumes radar and model derived datasets from NOAA, as previously described in the Natural System Sampling Design, will continue to be available for obtaining gridded datasets of precipitation and wind. The recommended localized measurements, however, will be used for ground-truthing the gridded datasets as well as for serving as explanatory variables (i.e., covariates) for other variables proposed in SWAMP (e.g., nekton community composition, wetland biomass). It is important to note that other meteorological sites exist just north of the coastal boundary near Lake Charles airport and should be considered during implementation phase.

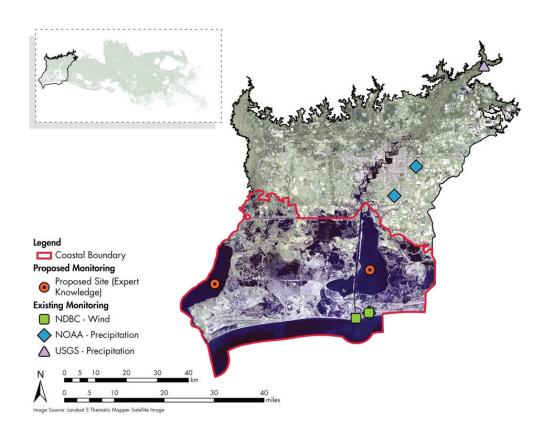


Figure 14. Existing and proposed weather and climate sites for the Calcasieu-Sabine Basin.

MERMENTAU BASIN

It is recommended from experts that two real-time meteorological sensors be added to the coastal area of Mermentau Basin on either existing platforms or in conjunction with the new water quality or hydrology continuous sites described below (Figure 15, Table 16). The sample size estimate assumes radar and model derived datasets from NOAA, as previously described in the Natural System Sampling Design, will continue to be available for obtaining gridded datasets of precipitation and wind. The recommended localized measurements, however, will be used for ground-truthing the gridded datasets as well as for serving as explanatory variables (i.e. covariates) for other variables proposed in SWAMP (e.g., nekton community composition, wetland biomass).

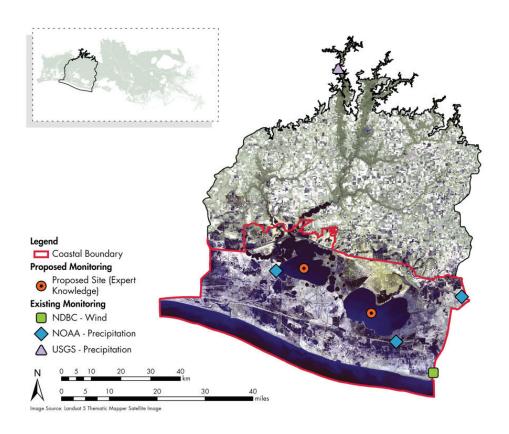


Figure 15. Existing and proposed weather and climate sites for the Mermentau Basin.

TECHE-VERMILION

It is recommended that one real-time meteorological sensor be added to the coastal area of Teche-Vermilion Basin on either existing platforms (e.g., add data collection of precipitation to the USGS site that currently collects wind data) or in conjunction with the new water quality or hydrology continuous sites described below (Figure 16, Table 17). The sample size estimate assumes radar and model derived datasets from NOAA, as previously described in the Natural System Sampling Design, will continue to be available for obtaining gridded datasets of precipitation and wind. The recommended localized measurements, however, will be used for ground-truthing the gridded datasets as well as for serving as explanatory variables (i.e. covariates) for other variables proposed in SWAMP (e.g., nekton community composition, wetland biomass).

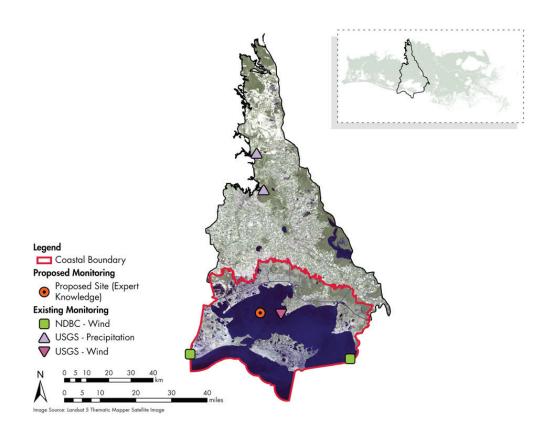


Figure 16. Existing and proposed weather and climate sites for the Teche-Vermilion Basin.

ATCHAFALAYA BASIN

It is recommended that one real-time meteorological sensors be added to the coastal area of Atchafalaya Basin on either existing platforms or in conjunction with the new water quality or hydrology continuous sites described below (Figure 17, Table 18). The sample size estimate assumes radar and model derived datasets from NOAA, as previously described in the Natural System Sampling Design, will continue to be available for obtaining gridded datasets of precipitation and wind. The recommended localized measurements, however, will be used for ground-truthing the gridded datasets as well as for serving as explanatory variables (i.e. covariates) for other variables proposed in SWAMP (e.g., nekton community composition, wetland biomass).

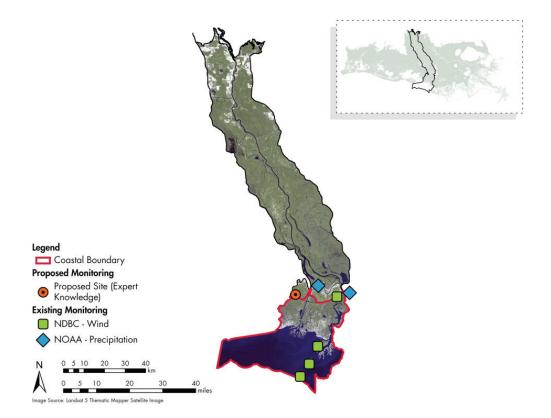


Figure 17. Existing and proposed weather and climate sites for the Atchafalaya Basin.

TERREBONNE BASIN

It is recommended from experts that three real-time meteorological sensors be added to the large coastal area of Terrebonne Basin on either existing platforms or in conjunction with the new water quality or hydrology continuous sites described below (Figure 18, Table 19). The sample size estimate assumes radar and model derived datasets from NOAA, as previously described in the Natural System Sampling Design, will continue to be available for obtaining gridded datasets of precipitation and wind. The recommended localized measurements, however, will be used for ground-truthing the gridded datasets as well as for serving as explanatory variables (i.e. covariates) for other variables proposed in SWAMP (e.g., nekton community composition, wetland biomass).

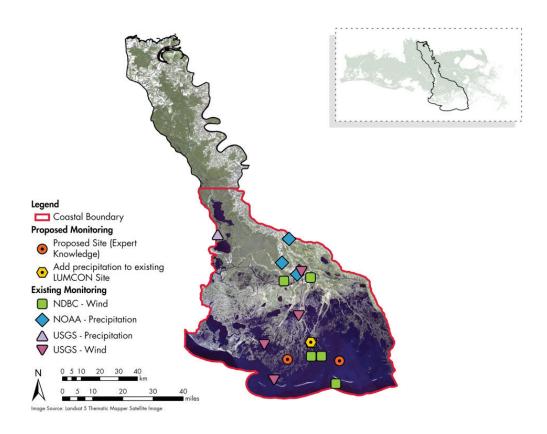


Figure 18. Existing and proposed weather and climate sites for the Terrebonne Basin.

BARATARIA BASIN

It is recommended that three real-time meteorological sensors be added to Barataria Basin on either existing platforms or in conjunction with the new water quality or hydrology continuous sites described below (Figure 19. Table 20). The sample size estimate assumes radar and model derived datasets from NOAA, as previously described in the Natural System Sampling Design, will continue to be available for obtaining gridded datasets of precipitation and wind. The recommended localized measurements, however, will be used for ground-truthing the gridded datasets as well as for serving as explanatory variables (i.e. covariates) for other variables proposed in SWAMP (e.g., nekton community composition, wetland biomass).

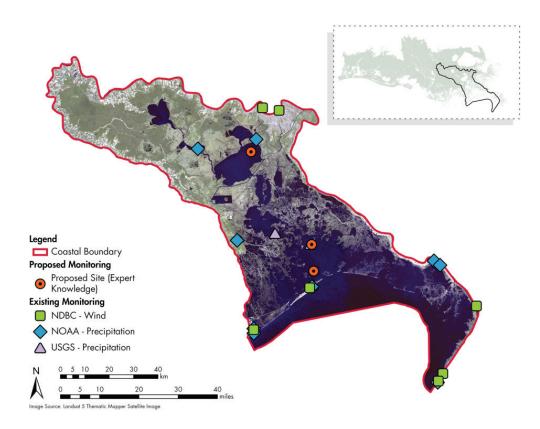


Figure 19. Existing and proposed weather and climate sites for the Barataria Basin.

PONTCHARTRAIN REGION

The total number of sites in the Pontchartrain Region is greater than Barataria Basin because of the larger size of the region and the potential variability in weather events that may only affect a portion of the region, such as cold fronts that often do not reach the southern extent of the coast or storms that originate from the Gulf of Mexico and weaken as they move inland. There are also a considerable number of stream gauges already established in the upper portion of the region for monitoring water levels and weather instruments have been established on many of those gauges (Figure 20, Table 21). As a result, it is recommended that two real-time meteorological sensors be added to the lower portion of Pontchartrain Region in conjunction with the new water quality and wave sites described below (Figure 20.). This estimate assumes radar and model derived datasets from NOAA will continue to be available for obtaining gridded datasets of precipitation and wind. The proposed network of localized measurements will be used for ground-truthing the gridded datasets as well as for serving as explanatory variables (i.e. covariates) for the wave and water quality measurements also collected at those sites.

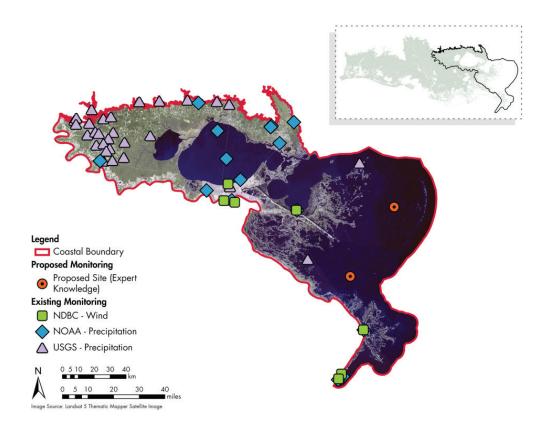


Figure 20. Existing and proposed weather and climate sites for the Pontchartrain Region.

BIOTIC INTEGRITY

Nekton Community Composition and Oyster Biomass

Louisiana's coastal ecosystem supports abundant and diverse nekton communities that play an important role in the recreational and commercial fishing industries. Brown and white shrimp, blue crab, gulf menhaden, red drum, and oysters are some of the key species in the region that contribute to the fishing industries. Survival and recruitment of these individuals are largely driven by estuarine water quality, primary production, and physical habitat characteristics, such as marsh edge or substrate composition (Chesney et al., 2000; Zimmerman et al., 2000), which in turn are influenced by riverine inputs to the system (Piazza & La Peyre, 2011). Future large-scale changes in the coastal environment resulting from restoration activities and natural system drivers have the potential to substantially change the community composition and food web dynamics of the system (Piazza & La Peyre, 2011; Rozas & Minello, 2011). Reliable predictions of future changes for nekton species are difficult to obtain given the species diversity occurring at different life stages within the estuaries and the resulting complex trophic food web that interacts with the local environment (Chesney et al., 2000). In order to meet the monitoring objective for nekton community composition, sampling must be effective at detecting changes in abundance of both residents and transients in order to fully capture the diversity of species and their life stages in the estuary and their response to basin-wide changes. Some fisheries-independent gear types deployed by LDWF's long-term coastal monitoring program can be used to meet this need, including 750-foot gillnets, 16-foot trawls, 50-foot seines, and electrofishing, as described in Appendix II. A power analysis was conducted for each basin or region using measurements of catch per unit effort (CPUE) by gear type for several different resident and transient species (unpubl. data, CPRA). In addition, the oyster biomass is assessed by LDWF by using oyster square meter plots and dredging methodology.

CALCASIEU-SABINE BASIN

Results of the initial coastwide power analysis indicate that the current number of gillnet sites should be increased from 13 to 15 in the Calcasieu-Sabine Basin in order to in order to capture the spatial variability within the region and more effectively detect when the relative abundance of selected species might vary from their long-term mean abundances (Figure 21, Table 15). The gillnets are sampled monthly from October through March, with bi-monthly samples taken in April and September, for a total of 18 sampling events within the year. The GRTS approach was used to initially select the two added gillnet sites in the basin. The two sites were vetted and field verified by LDWF to set the final station locations for SWAMP. Results of the basinwide power analysis indicate the existing sample size of the Calcasieu-Sabine Basin 16-foot trawl sites are sufficient for the purposes of SWAMP. All sites should continue to be sampled monthly, at a minimum. The 16-foot trawls are sampled semimonthly from April through July and in December, then monthly from August through November, and January through March, for a total of 17 sampling events per year. Results of the basinwide power analysis indicate the 50-foot seine sites should be increased from 13 to 15 to capture the spatial variability within the region and effectively detect changes that are 25-30% per year for select marsh species in the region. The GRTS approach was used for initial site selection. The seine sites were again vetted and field verified by LDWF. All existing seine sites should be sampled monthly, at a minimum.

For the oyster monitoring program, periodic mapping of oyster reefs is needed to accurately characterize the substrate and determine the size of the existing oyster beds. Any additional mapping required for the Calcasieu-Sabine region could be done in conjunction with the existing oyster dredge sampling by LDWF coastal biologists using poling and side-scan sonar. After vetting with LDWF, no additional oyster square meter or dredge station sites are recommended for Calcasieu-Sabine Basin. There are 22 oyster square meter and dredge sites in the basin, with six sites in Sabine Lake (western lake in the basin) and 16 in Calcasieu Lake (eastern lake in the basin). The dredge sites are sampled monthly except for July, which is reserved for when the square meters are sampled by certified divers.

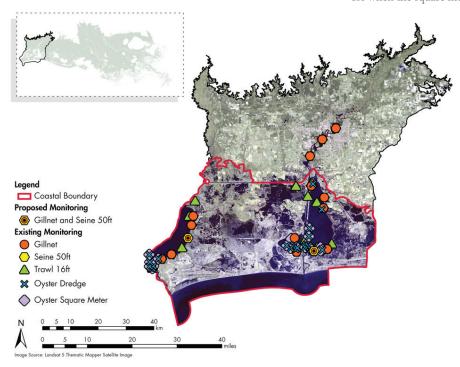


Figure 21. Existing and proposed sites in Calcasieu-Sabine Basin for monitoring nekton community composition.

MERMENTAU BASIN

Initially with the GRTS approach, the SWAMP basinwide analysis added five gillnet sites to Mermentau Basin, in Grand Lake (western most lake) and White Lake (eastern most lake, Figure 22, Table 16). No 16-foot trawl sites were added to the region. The SWAMP basinwide analysis (with the GRTS approach) also added eight 50-foot seine sites to Mermentau Basin, in Grand and White Lakes. The basinwide SWAMP analysis added sites in order to capture the spatial variability within the region to more effectively evaluate the basinwide patterns in species. However, LDWF has never sampled in Mermentau Basin outside of three 16-foot trawl sites in the lower Mermentau River (south of Grand Lake), due to limited access of the water bodies within the wildlife management areas and privately-owned lands (LDWF, pers. comm.). Therefore, no new gillnets, seines, or oyster monitoring sites can be initiated for this basin by LDWF.

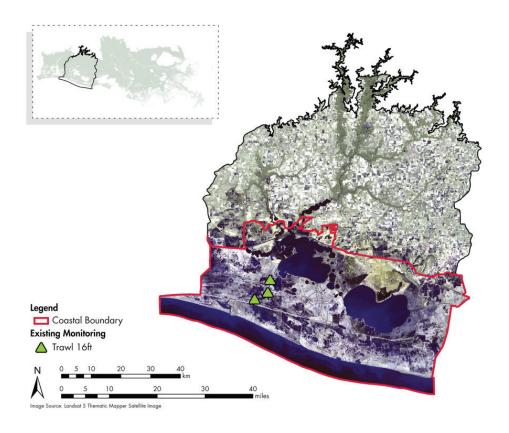


Figure 22. Existing and proposed sites in Mermentau Basin for monitoring nekton community composition.

TECHE-VERMILION BASIN

Results of the basinwide power analysis indicate that the current number of gillnet sites should be increased from 13 to 20 in the Teche-Vermilion Basin in order to capture the spatial variability within the region to more effectively evaluate the basinwide patterns in species (CPRA, unpublished data). The gill nets are sampled monthly from October through March, bi-monthly samples are collected in April and September, for a total of 18 sampling events within the year. The GRTS approach was used to initially select the seven added gillnet sites in the basin. The station sites were vetted with LDWF, and two of the original seven sites were retained as proposed or new sites in the western part of Vermilion Bay (most western bay in the basin) and then field verified by LDWF to set the final two gillnet station locations for SWAMP. The other five sites initially placed in the eastern part of Vermilion Bay around East Cote Blanche Bay and the Wax Lake Delta were dropped because the region is rich in freshwater and sediment, making sampling inefficient and impractical. LDWF recommended that electrofishing would be the most appropriate sampling methodology to be considered in future basinwide monitoring scoping and design planning for this basin. Results of the power analysis indicate the existing sample size of the 16-foot trawl sites is sufficient for the purposes of SWAMP (Figure 23, Table 17). All sites should continue to

be sampled monthly, at a minimum. Results of the basinwide power analysis indicate the 50-foot seine sites should be increased from 13 to 20 to capture the spatial variability within the region. The GRTS approach was used for initial site selection, with preliminary site locations the same as the gillnet locations. The seine sites were again vetted with LDWF to keep two of the seven suggested seine sites as new or proposed sites in the western part of Vermilion Bay, and the two sites were field verified by LDWF. All existing seine sites should be sampled monthly, at a minimum.

For the oyster monitoring program, periodic mapping of oyster reefs is needed to accurately characterize the substrate and determine the size of the existing oyster beds. Any additional mapping required for the Teche-Vermilion region could be done in conjunction with the existing oyster dredge sampling by LDWF coastal biologists using poling and side-scan sonar. After vetting with LDWF, no additional oyster square meter or dredge station sites are recommended for the basin. There are 11 oyster square meter and dredge sites in the basin, and LDWF has proposed to move some of the oyster sampling sites southward to better cover the existing oyster grounds on the south side of Marsh Island (LDWF, pers. comm). The dredge sites are sampled monthly except for July, when the square meters are sampled by certified divers. Monthly sampling by the two gears should continue for the basin.

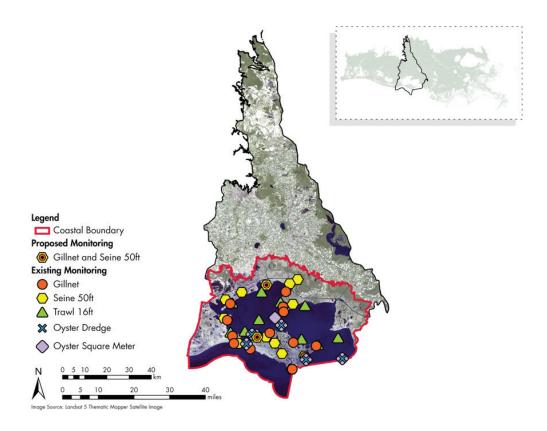


Figure 23. Existing and proposed sites in Teche-Vermilion Basin for monitoring nekton community composition.

ATCHAFALAYA BASIN

There are no existing LDWF coastal fisheries-independent monitoring sites in the Atchafalaya Basin (Figure 24, Table 18). The coastal waters of the Atchafalaya Basin are rich in freshwater and sediment, making the coastal sampling gears inefficient and impractical. LDWF recommended that electrofishing would be the most appropriate sampling methodology to be considered in future basinwide monitoring scoping and design planning efforts.

For the oyster monitoring program, periodic mapping of oyster reefs is needed to accurately characterize the substrate and determine the size of the existing oyster beds. Any additional mapping required for the Atchafalaya Basin could be done in conjunction with the existing oyster dredge sampling by LDWF coastal biologists using poling and side-scan sonar. After vetting with LDWF, no additional oyster square meter or dredge sites are recommended for the basin. There are three oyster square meter and dredge sites in the basin. The dredge sites are sampled monthly except for July, when the square meters are sampled by certified divers. Monthly sampling by the two gears should continue for the basin.

Figure 24. Existing and proposed sites in Atchafalaya Basin for monitoring nekton community composition.

TERREBONNE BASIN

Results of the basinwide power analysis indicate the existing sample size of the Terrebonne Region for the 750-foot gillnets, 16-foot trawls, and 50-foot seines are sufficient for the purposes of SWAMP. Therefore, no new sites are needed (Figure 25, Table 19). The 24, 750-foot gillnet and 50-foot sites are effective at detecting a 15% change in annual mean CPUE of adult spotted seatrout and a 18% change in mean annual CPUE of gulf killifish (unpubl. data, CPRA). The 25 existing 16-foot trawl sites are similarly effective at detecting at least a 15% change in juveniles and adult brown shrimp and white shrimp (unpubl. data, CPRA).

For the oyster monitoring program, periodic mapping of oyster reefs is needed to accurately characterize the substrate and determine the size of the existing oyster beds. Any additional mapping required for the Terrebonne region could be done in conjunction with the existing oyster dredge sampling by LDWF coastal biologists using poling and side-scan sonar. After vetting with LDWF, no additional oyster square meter or dredge station sites are recommended beyond the 19 existing sites for the basin. Most of the oyster monitoring site are located along the western side of Terrebonne, around the Caillou Bay and Lake Pelto areas. A few sites are located in Terrebonne Bay. The dredge sites are sampled monthly except for July, when the square meters are sampled by certified divers. Monthly sampling by the two gears should continue for the basin.

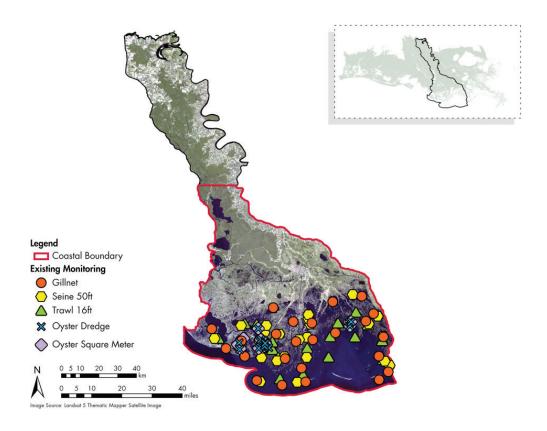


Figure 25. Existing sites in Terrebonne Basin for monitoring nekton community composition.

BARATARIA BASIN

Results of the Barataria Basin power analysis indicate that the current number of gillnet sites is adequate for select species, assuming the sites are visited every month (Table 20; Appendix II, Figure 122). Efforts to randomize selection of sites using the GRTS approach could help reduce bias in the data that may be present due to the use of non-probability based methods to select sites and ultimately improve estimates of population means and variances and change detection abilities (McDonald, 2012). The 16-foot trawl sample size should be increased by ten sites in order to improve the effectiveness in detecting trends in the penaeid shrimps (Appendix II, Figure 123). All sites (new and existing) should be sampled monthly, at a minimum. The GRTS approach was used for the selection of new trawl sites (Figure 26). Further, results of the analysis indicate the 50-foot seines are only effective for detecting changes that are 25-30% per year for juvenile bay anchovy and grass shrimp, and even higher changes for blue crabs, brown shrimp and white shrimp, Gulf menhaden, and sheepshead minnows (Appendix II, Figure 125), which is likely a result of the low and variable catch efficiency of the gear (Rozas & Minello, 1997). Although there is no agreed upon universal threshold for what constitutes biologically significant change, the seines were least effective across multiple species in detecting change, potentially limiting their utility in future analyses. The

use of other gears should be considered, such as drop samplers or throw traps, which would allow for estimates of biomass, a critical parameter in many fishery models such as Ecopath with Ecosim and the Comprehensive Aquatic Systems Model and would more effectively sample the shallow shoreline and edge habitats (Rozas & Minello, 1997). A three-year pilot study with overlapping seine and drop sample data collection would enable comparison of the gear types and quantification of their relative effectiveness at capturing particular species and life stages of interest. Currently, LDWF is also testing the utility of cast nests in conjunction with seine sampling to determine their effectiveness.

For LDWF's freshwater program, results of the power analysis indicate that the existing sample size of 16 electrofishing sites in Barataria Basin is sufficient for detecting changes in largemouth bass over time (Appendix II, Figure 124). Lastly, to improve the oyster monitoring program, mapping of oyster reefs is needed to accurately characterize the substrate and determine the size of the existing oyster beds. Upon completion of the oyster survey, the GRTS master sample could be categorized into oyster versus non-oyster habitats in order to select additional sites for monitoring. Further, the frequency of oyster sampling should be increased to two to four times a year in order to track seasonal changes in oyster biomass, survival, and potential diseases. For coastwide monitoring, results of the power analysis indicate that existing sample sizes are sufficient for detecting change at the coastwide scale.

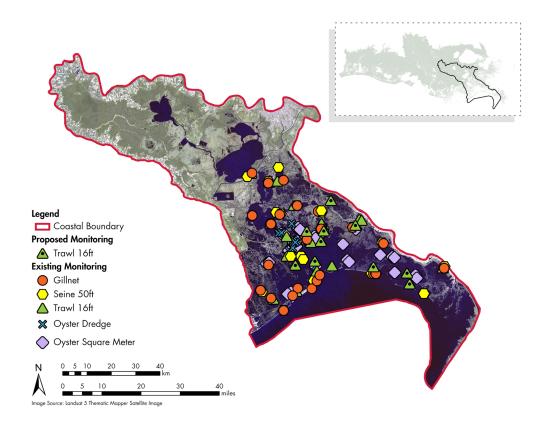


Figure 26. Existing and proposed 16-foot trawl sites in Barataria Basin for monitoring nekton community composition.

PONTCHARTRAIN REGION

Results of the power analysis indicate the existing sample size of the Pontchartrain Region for the 750-foot gillnets, 16-foot trawls, and 50-foot seines are sufficient for the purposes of SWAMP. Therefore, no new sites are needed (see Figure 126 for existing sites). The 750-foot gillnet is effective at detecting 24% and 33% changes in mean annual CPUE of adult spotted seatrout and adult Gulf menhaden with the existing sample size (Table 21; Appendix II, Figure 127). The 16-foot trawl is most effective at the current sample size for detecting at least a 20% change in juveniles and adult bay anchovies, juvenile blue crabs, and juvenile brown shrimp and white shrimp (Appendix II, Figure 128). The 50-foot seine shows the highest variability of all the gear types tested at detecting trends on the basinwide scale. A 15% change can be detected in juvenile bay anchovy, 25% change can be detected in juvenile blue crab and grass shrimp, and 30% (and higher) for juvenile brown shrimp and white shrimp and Gulf menhaden (Appendix II, Figure 129). All existing sites (Appendix II, Figure 126) should be sampled monthly, at a minimum.

For LDWF's freshwater program, results of the power analysis indicate that the existing sample size of electrofishing sites is sufficient for detecting changes in largemouth bass over time (Appendix II, Figure 130). For the oyster monitoring program, periodic mapping of oyster reefs is needed to accurately characterize the substrate and determine the size of the existing oyster beds. Much of the Pontchartrain Region was recently mapped by LDWF (B. Lezina personal communication, January 2016) and any additional mapping required could be done in conjunction with bathymetry surveys planned for the region. As was recommended with the Barataria Basin monitoring plan, the frequency of oyster sampling in the Pontchartrain Region should be increased to two to four times a year in order to track seasonal changes in oyster biomass and survival. No additional oyster sites are recommended at this time as the existing number of sites and their locations adequately cover much of the region (see Figure 126 for existing sites).

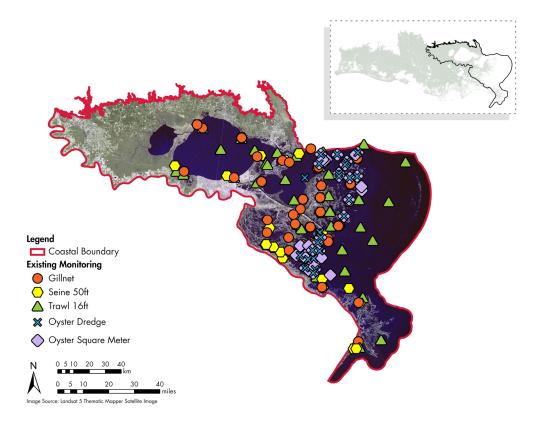


Figure 27. Existing sites in Pontchartrain Region for monitoring nekton community composition.

Soil Condition and Wetland Vegetation Biomass

Bulk density is used to estimate and evaluate many physical soil properties, such as porosity, water retention, buoyancy, and compressibility (Ruehlmann & Körschens, 2009). Organic matter and mineral content of wetland soils are key determinants of soil development and are often used to describe the roles of organic matter accumulation - derived from above- and below-ground plant material, and mineral sediment deposition (Neubauer, 2008; Nyman et al., 2006). Both processes will vary with plant communities and other aspects of wetland dynamics, including soil inundation, drainage, redox potential, and other biogeochemical processes (Reddy et al., 2000). Currently, the CRMS collects soil cores for soil condition at all the CRMS sites every 10 years.

Wetland biomass refers to both the above- and below-ground components of the plant, typically separated by live and dead materials. Biomass production contributes to soil organic matter content and elevation changes and is affected by inundation, nutrient concentrations, soil properties, and for plants with C3 metabolisms, atmospheric CO2 (Bazzaz, 1990; Day et al., 2013; Kirwan & Guntenspergen, 2012). Measurements of biomass at the end of the growing season for each year can be used to evaluate wetland primary productivity in response to management activities and ecosystem drivers. The SWAMP program plans to collect wetland biomass samples at selected CRMS sites every 5 years.

A power analysis was conducted with measurements of aboveground biomass to inform sample size requirements for aboveground and belowground biomass, organic matter, and bulk density for Barataria Basin and Pontchartrain Region only (see Appendix II). All herbaceous (i.e., non-forested wetland) CRMS sites have been sampled twice, for soil bulk density and organic matter, between 2006 and 2018. A portion of the data collected from the CRMS coastwide efforts will be used to fulfill the SWAMP sampling design. For the western basins, expert knowledge from scientists at CPRA and USGS were utilized to inform sample size and location for wetland biomass sampling. In order to leverage existing data and realize cost savings in the future, sampling site selection focused on existing CRMS sites. Wetland biomass sites were selected to provide even spatial coverage within marsh habitat types for each basin (Sasser et al. 2014), while eliminating forested wetlands and floating marsh sites from the sampling design.

CALCASIEU-SABINE BASIN

Of the existing CRMS sites in the Calcasieu-Sabine Basin, 23 sites can be utilized for soil condition (organic matter and bulk density) and wetland vegetation biomass (aboveground and belowground) collection. Collection needs to occur outside the 200 m x 200 m current data collection area due to the destructive nature of soil and biomass collection. The 23 sites represent some of the vegetation types identified in a previous coastwide vegetation survey (Sasser et al, 2014), such that two sites were selected from fresh, 19 sites from intermediate, two sites from brackish, and none from saline marshes (Figure 28, Table 15).



Figure 28. New sites in Calcasieu-Sabine Basin for sampling wetland biomass and soil condition.

MERMENTAU BASIN

Of the existing CRMS sites in the Mermentau Basin, 24 sites can be utilized for soil condition (organic matter and bulk density) and wetland vegetation biomass (aboveground and belowground) collection. The 24 sites represent some of the vegetation types identified by CRMS, such that eight sites were selected from fresh, 12 sites from intermediate, four sites from brackish, and none from saline marshes (Figure 29, Table 16).

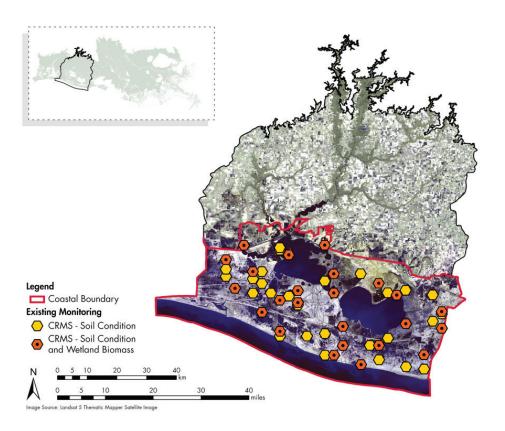


Figure 29. New sites in Mermentau Basin for sampling wetland biomass and soil condition.

TECHE-VERMILION BASIN

Of the existing CRMS sites in the Teche-Vermilion Basin, 20 sites can be utilized for soil condition (organic matter and bulk density) and wetland vegetation biomass (aboveground and belowground) collection. The 20 sites represent some of the vegetation types identified by CRMS, such that four sites were selected from fresh, eight sites from intermediate, eight sites from brackish, and none from saline marshes (Figure 30, Table 17).

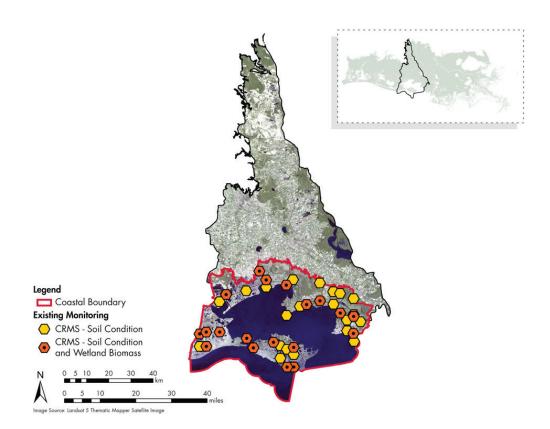


Figure 30. New sites in Teche-Vermilion Basin for sampling wetland biomass and soil condition.

ATCHAFALAYA BASIN

Of the existing CRMS sites in the Atchafalaya Basin, 10 sites can be utilized for soil condition (organic matter and bulk density) and wetland vegetation biomass (aboveground and belowground) collection. The 10 sites represent typical deltaic conditions and some of the vegetation types identified by CRMS, such that seven sites were selected from fresh and three sites from intermediate type. No brackish or saline marsh sites exist (Figure 31, Table 18).

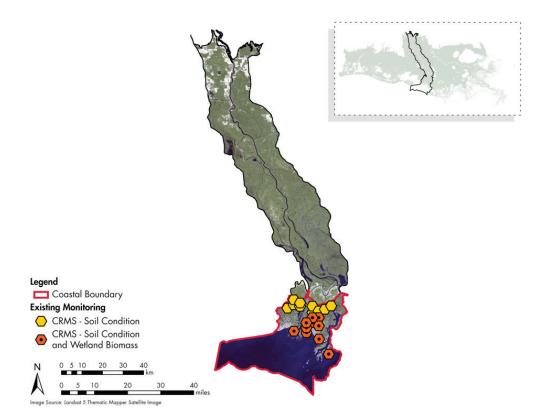


Figure 31. New sites in Atchafalaya Basin for sampling wetland biomass and soil condition.

TERREBONNE BASIN

In Terrebonne Basin, 31 CRMS sites can be utilized for soil condition (organic matter and bulk density) and wetland vegetation biomass (aboveground and belowground) collection, if it occurs outside the 200 m x 200 m current data collection area, due to the destructive nature of soil and biomass collection. The 31 sites represent vegetation types identified by CRMS, such that eight sites were selected from fresh, seven sites from intermediate, six sites from brackish, and 10 sites from saline (Figure 32, Table 19).

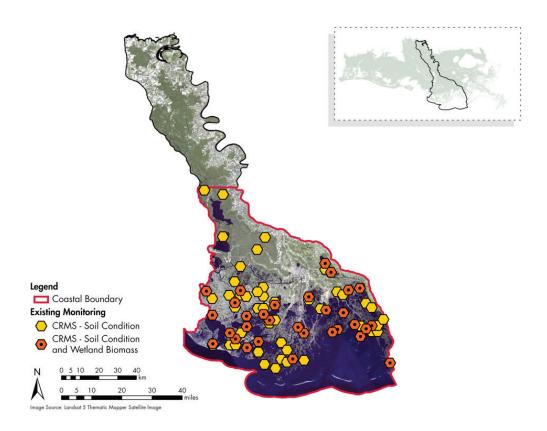


Figure 32. New sites in Terrebonne Basin for sampling wetland biomass and soil condition.

Note that the new biomass sites are utilizing existing CRMS sites.

BARATARIA BASIN

The results of the power analysis for herbaceous wetlands indicate that 21 sites are needed for detecting moderate changes (~11% annual change) in biomass (aboveground and belowground) and soil condition (organic matter and bulk density) over five-year time periods in the Barataria Basin. On the coastwide scale, 75 sites are required for detecting changes. The existing CRMS sites can be utilized for biomass collection, if collection occurs outside the 200 m x 200 m current data collection area, due to the destructive nature of biomass collection. Biomass and soil condition data have already been collected at seven CRMS sites as part of a basinwide modeling effort to understand the effect of diversions on adjacent

wetlands. Thus, 14 additional sites were randomly selected from the available CRMS sites to complete the sample size of 21. The 14 sites were proportionally allocated to each of the vegetation types identified by CRMS, such that three sites were selected from fresh, two sites from intermediate, three sites from brackish, and six sites from saline marshes (Figure 33, Table 20).

No data at the time of the power analysis were available to assess the ability to detect changes in biomass or soil condition of forested wetlands. As a result, it is recommended that biomass and soil conditions be monitored at all 11 forested CRMS sites, followed by an assessment of power once these initial data become available.

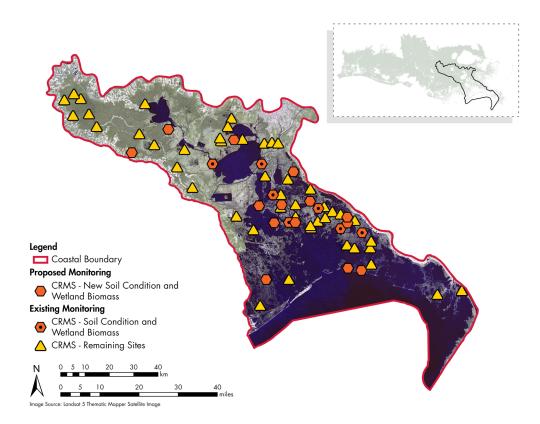


Figure 33. New sites in Barataria Basin for sampling wetland biomass and soil condition.

Note that the new biomass sites are utilizing existing CRMS sites.

PONTCHARTRAIN REGION

As discussed in Appendix II under the Pontchartrain Region Power Analysis section, the results for the region are identical to those of Barataria Basin. To summarize, 21 sites are needed for detecting moderate changes (~11% annual change) in biomass (aboveground and belowground) and soil condition (organic matter and bulk density) over five-year time periods (Table 21). Biomass and soil condition have already been collected at eight CRMS sites as part of a basinwide modeling effort to understand the effect of diversions on adjacent wetlands (Figure 34). The additional 13 sites needed to complete the sample size of 21 and will be selected in conjunction with CPRA.

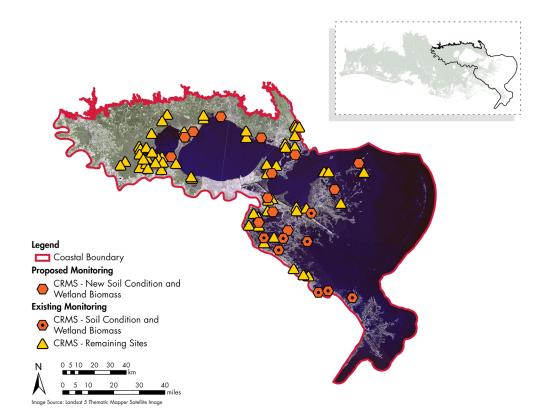


Figure 34. CRMS sites in Pontchartrain Region for sampling wetland biomass and soil condition.

Wetland Vegetation Community Composition

Herbaceous wetlands in Louisiana occur along the interface between the aquatic and terrestrial environments, receiving influence on the seaward end from tides and tropical systems, and on the landward side from freshwater inflows and frontal storms (Battaglia et al., 2012). The composition of species found along the coast is a reflection of the relative influence of these forcings and the underlying geomorphology of the region. In coastal Louisiana, there are four distinct vegetation zones found in herbaceous wetlands, including fresh, intermediate, brackish, and saline wetlands. These distinct zones are defined by vegetation salinity and flooding tolerance and are defined by flood water salinity and vegetation community composition (Visser et al., 1998).

In Barataria Basin and the Pontchartrain Region, emergent vegetation communities generally transition from oystergrass communities at the seaward end of the basins to brackish mix, needlerush, saltgrass, wiregrass, three-square, and finally bulltongue communities moving inland along a decreasing salinity gradient. In Barataria Basin, maidencane communities are often found in the freshest region of the basin inland from the bulltongue zone (Snedden, 2019).

In the western basins of southwestern LA, oystergrass and brackish mix communities are much less prominent. Here, the more saline regions are dominated by saltgrass and bulrush communities. Moving inland along a decreasing salinity gradient, the vegetation community transition to wiregrass, bulltongue, and finally maidencane furthest inland. Paspalum communities are commonly found in intermediate to brackish settings at lower elevations that experience prolonged flooding. Roseau cane communities are often found in these settings as well, in addition to being common at the mouth of the Mississippi River (Snedden, 2019). Coastal forested wetlands occupy elevations above that of freshwater and saltwater marshes and are typically inundated for most of the growing season (April - October), although periodic drawdowns are necessary for seedling establishment (Keim et al., 2006). Given their geographical position in low-lying coastal areas, they face an array of climate-linked challenges, from rising sea levels to reduced freshwater input and drought conditions. Forested wetlands exposed to increasing saltwater intrusion as a result of rising sea levels, a subsiding coast, and a lack freshwater inflows, are at risk of tree death and forest dieback (Doyle et al., 2007). Critical to the survival of the slow-growing species that dominate forested swamps is the recruitment of new individuals, which may be hindered by the salinity and flooding stress.

Monitoring of herbaceous and forested wetlands is currently conducted through the CRMS program and includes measures of species composition, cover, and average height of the dominant species (Figure 6). A continuous salinity and water level recorder is also stationed at each site. A power analysis was conducted by using the floristic quality index (FQI) and forested FQI (FFQI) to inform sample size requirements for monitoring vegetative community composition in herbaceous and forested wetlands for Barataria Basin and Pontchartrain Region only. For the western basins, expert knowledge from scientists at CPRA and USGS were utilized to inform sample sizes for the herbaceous and forested wetlands by utilizing the existing CRMS sites. Prior power analyses conducted in Barataria Basin and Pontchartrain Region also indicated that the current CRMS sample size was

sufficient and that consultation with experts agreed that no additional sites were needed beyond the existing CRMS sites in the other basins.

CALCASIEU-SABINE BASIN

There are currently 46 existing wetland sites with the CRMS program in the Calcasieu-Sabine Basin (Figure 28, Table 15) that can be utilized for monitoring wetland vegetation community composition and thus no additional sites are recommended at this time. Of these sites, all are herbaceous and none are forested wetlands sites.

MERMENTAU BASIN

There are currently 53 existing wetland sites with the CRMS program in the Mermentau Basin (Figure 29, Table 16) that can be utilized for monitoring wetland vegetation community composition and thus no additional sites are recommended at this time. Of these sites, all are herbaceous and none are forested wetlands sites.

TECHE-VERMILION BASIN

There are currently 46 existing wetland sites with the CRMS program in the Teche-Vermilion Basin (Figure 30, Table 17) that can be utilized for monitoring wetland vegetation community composition and thus no additional sites are recommended at this time. Of these sites, 43 are herbaceous and three are forested wetlands sites that currently exist.

ATCHAFALAYA BASIN

There are currently 21 existing wetland sites with the CRMS program in the Atchafalaya Basin (Figure 31, Table 18) that can be utilized for monitoring wetland vegetation community composition and thus no additional sites are recommended at this time. Of these sites, 11 are herbaceous and 10 are forested wetlands sites.

TERREBONNE BASIN

There are currently 75 existing wetland sites with the CRMS program in the Terrebonne Basin (Figure 32, Table 19) that can be utilized for monitoring wetland vegetation community composition and thus no additional sites are recommended at this time. Of these sites, 69 are herbaceous and six are forested wetlands sites that currently exist.

BARATARIA BASIN

The results of the power analysis for herbaceous wetlands indicate that 24 sites are required for detecting moderate changes (~15% annual change) in vegetation community composition on an annual basis in Barataria Basin (Table 20). On the coastwide scale, 75–160 sites are required for detecting changes in vegetative community composition. There are currently 54 existing herbaceous wetland sites with the CRMS program in Barataria Basin (Figure 33) and 390 coastwide, thus no additional sites are recommended at this time. The results of the power analysis for forested wetlands indicate that the existing sample size of 11 sites is adequate for detecting small changes (~11%) in Barataria

Basin over five-year time spans, but not annually. Given the slow growth rate of forested wetlands, changes in species composition will not be evident over annual time scales and thus the five-year time span is likely more appropriate for monitoring forests. As a result, no additional sites are recommended at this time. Other indices that are more sensitive to changes in forest communities over annual time scales should be explored if capturing short-term changes is of interest. Further, monitoring of land use and land cover over large scales (under the Physical Terrain category) can also be used in combination with in situ monitoring to assess land use and land cover changes at a larger scale.

PONTCHARTRAIN REGION

The results of the power analysis for herbaceous wetlands indicate that 27 sites are required for detecting change of at least 20% in vegetative community composition on an annual basis (Table 21). There are currently 62 existing herbaceous wetland sites with the CRMS program in the Pontchartrain Region (Figure 34); thus; no additional sites are recommended at this time. The results of the power analysis for forested wetlands indicate that the existing sample size of 27 sites is adequate for detecting small changes (~12%) in the region over five-year time spans, but not annually. Given the slow growth rate of forested wetlands, changes in species composition will not be evident over annual time scales and thus the five-year time span is likely more appropriate for monitoring forests. As a result, no additional sites are recommended at this time.

WATER QUALITY

Chlorophyll a, Dissolved Oxygen, Nutrients, Salinity, Turbidity, Suspended Sediments

Chlorophyll a is an indicator of pelagic primary production by phytoplankton (i.e., total quantity of biomass produced by primary producers) and indicates the presence of phytoplankton in estuarine open waters, measured as general fluorescence units, or calculated to μg L-1. Chlorophyll fluorescence can be measured continuously in situ using a chlorophyll fluorescence sensor, or discretely through the collection of water samples and laboratory analysis. Phytoplankton are controlled by several factors including nutrient loading, nutrient cycling, light availability, water residence time, and grazing by zooplankton and benthic filter feeders (Boyer et al., 2009). As organic matter – originating from primary production or other inputs – sinks to the bottom and decomposes, bottom waters can become oxygen-deficient.

Dissolved Oxygen (DO) concentrations and stratification, due to salinity and/or temperature, are also influenced by abiotic conditions such as water temperature, flooding level, water movement (Kaller et al., 2011; Sklar & Browder, 1998), and nutrient loading (Rabalais & Turner, 2001). DO also tends to have a strong diurnal cycle, typically linked to the biotic and abiotic factors mentioned above. Given that most forms of aquatic life requires a specific range of dissolved oxygen concentrations for respiration – outside of which can be harmful – DO can be used as an indicator of the overall health of the open water bodies and, when measured continuously, can be used to track hypoxic events (< 2 ppm).

Measurement of estuarine water nutrient concentrations directly provides information on nutrient inputs to the system and potential effects upon biotic communities and eutrophication status (Bricker et al., 1999; Nixon, 1995). Total nitrogen and total phosphorus concentrations are measured in either mg L-1 or μM from a nonfiltered sample and provide a measure of the combined dissolved inorganic (NH4+, NO2-, NO3- or PO43-), particulate organic (e.g., phytoplankton), and particulate inorganic (e.g., sediment) components of the water column (USEPA, 2001). While estuarine and marine systems tend to be nitrogen limited, phosphorus has an important role in the production of freshwater phytoplankton communities, which can include the plume of the Mississippi River (Anderson et al., 2002; Sylvan et al., 2006). Silicate is an essential nutrient for diatoms, and changes in concentration, measured in μM , can influence plankton and copepod communities with potentially large implications throughout the pelagic food web (Turner et al., 1998).

Estuarine salinity patterns coincide with the distribution, growth, and productivity of nekton communities (Adamack et al., 2012; Minello et al., 2003; Zimmerman et al., 2000), zonation patterns of vegetation (Pennings et al., 2005), and ultimately the functions and services wetlands provide (Odum, 1988). As an essential characteristic of the coastal system, salinity is a key variable in ecological and hydrodynamic models, and forecasting capabilities are limited by inadequate information of salinity patterns in the estuary (Habib et al., 2007).

Lastly, turbidity is a characteristic of estuarine water quality that quantifies the clarity of the water due to suspended solids and is a measurement of transmission of light in NTU. The concentration of the total suspended solids (TSS) is quantified by collecting a water sample and filtering it in the laboratory to generate mineral:organic content and grain size information as a volumetric measurement in mg L-1. Statistical relationships can also be developed in order to use measurements in NTU as a predictor of TSS concentrations, if the relationships are based on measurements collected in the same place and time. Turbidity is influenced by phytoplankton as well as riverine discharge and wind events, which transport or resuspend particulates and affect water residence time (Allison et al., 2013; Cloern, 1987; Lane et al., 2007). Turbidity indicates the ability for growth and survival of pelagic and benthic organisms, such as fish, shellfish, and seagrasses. TSS (in mg L-1) is a critical input variable for calibrating and validating sediment transport in the state's planning models. As a result, both measures are needed as part of a monitoring program.

A power analysis was conducted for each basin or region using measurements of chlorophyll a, DO, nutrients, salinity, and TSS concentrations to inform sample size requirements of all water quality variables. The official Louisiana coastal zone boundary was used to subdivide the western basins of Calcasieu-Sabine, Mermentau, Teche-Vermilion, Atchafalaya, and Terrebonne and focus the water quality monitoring design near the coast.

CALCASIEU-SABINE BASIN

The results of the power analysis indicate nine discrete sites would be adequate to detect small to moderate changes (< 21%) in mean annual chlorophyll a, DO, nutrients, salinity, turbidity, and TSS concentrations from one year to the next in the coastal area of Calcasieu-Sabine Basin. Four of those nine discrete sites should also be implemented as continuous monitoring sites for chlorophyll a, DO, salinity, and TSS to capture short-term changes within the basin and draw inference from the discrete measurements (Figure 35, Table 15). These short-term changes will be useful for documenting the duration of phytoplankton blooms and hypoxic events and for developing statistical relationships between turbidity and TSS. Once an adequate time series of continuous data is available (≥ 3 years), a power analysis could be run to determine whether the sample size is adequate.

Five new or proposed discrete sites are necessary to meet the recommended total sample size of nine (Figure 35, Table 15). These sites were selected using the GRTS approach described in the "Natural System Sampling Design" (see Figure 10 for master sample).

There are also 48 CRMS sites within small water bodies and canals. This sample size was deemed sufficient for monitoring these water body types. Further, LDEQ also collects some of the water quality parameters on a less frequent basis and does not always sample the entire basin within the same year. As a result, years in which LDEQ does monitor in the Calcasieu-Sabine Basin will result in an increased sample size and added benefit to the dataset (Table 15).

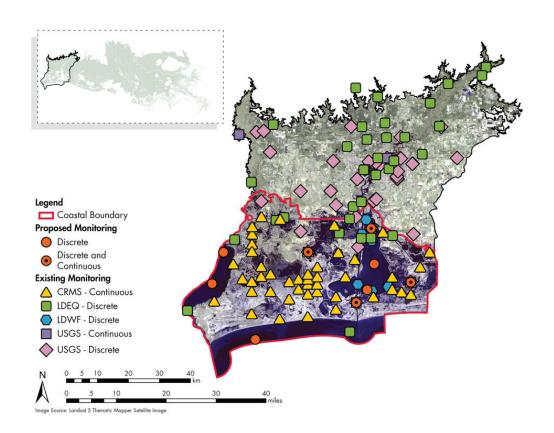


Figure 35. Existing and proposed water quality monitoring sites for Calcasieu-Sabine Basin.

Discrete measurements of dissolved oxygen, nutrient constituents, turbidity, total suspended solids, and salinity are measured at LDEQ and LDWF sites. No existing sites measure chlorophyll a. Continuous salinity measurements are available at CRMS and USGS sites. Refer to Table 15 for more detailed information on the existing and proposed monitoring sites in Calcasieu-Sabine.

MERMENTAU BASIN

The results of the power analysis and visual inspection to increase spatial coverage based on the GRTS recommendation indicated that 15 discrete sites would be adequate to detect small to moderate changes (< 21%) in mean annual chlorophyll a, DO, nutrients, salinity, turbidity, and TSS concentrations from one year to the next in the coastal area of Mermentau Basin (Figure 10, Table 16). Three of those 15 discrete sites should also be implemented as continuous monitoring sites for chlorophyll a, DO, salinity, and TSS to capture short-term changes within the basin and draw inference from the discrete measurements. These short-term changes will be useful for documenting the duration of phytoplankton blooms and hypoxic events and for developing statistical relationships between turbidity and TSS. Once an adequate time series of continuous data is available (≥ 3 years), a power analysis could be run to determine whether the sample size is adequate.

Three active USGS platforms that collect salinity can be leveraged for installing continuous sensors of the variables listed above and used for discrete sampling. One site is located in the north shore of White Lake and the other two are located south of Grand and White lakes. Thus, 12 new or proposed sites are necessary to meet the recommended sample size of 15 (Figure 36, Table 16) and were selected using the GRTS approach described in the "Natural System Sampling Design" (see Figure 10 for master sample).

There are also 54 CRMS sites within smaller water bodies and canals. This sample size was deemed sufficient for monitoring these water body types. Further, LDEQ also collects some of the water quality parameters on a less frequent basis and does not always sample the entire basin within the same year. As a result, years in which LDEQ does monitor in the Mermentau Basin will result in an increased sample size and added benefit to the dataset (Table 16).

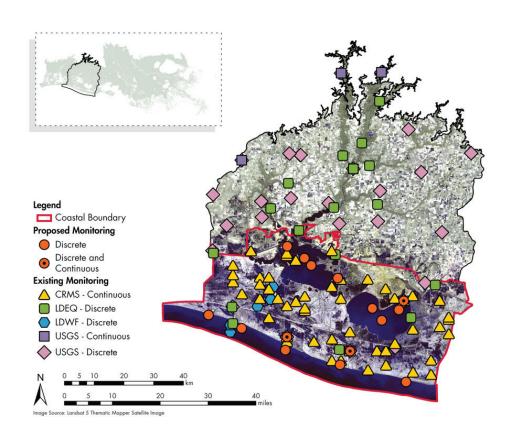


Figure 36. Existing and proposed water quality monitoring sites for Mermentau Basin.

Discrete measurements of dissolved oxygen, nutrient constituents, turbidity, total suspended solids, and salinity are measured at LDEQ and LDWF sites. No existing sites measure chlorophyll a. Continuous salinity measurements are available at CRMS and USGS sites. Refer to Table 16 for more detailed information on the existing and proposed monitoring sites in Mermentau Basin.

TECHE-VERMILION BASIN

The results of the power analysis indicate 7 discrete sites would be adequate to detect small to moderate changes (< 21%) in mean annual chlorophyll a, DO, nutrients, salinity, turbidity, and TSS concentrations from one year to the next in the coastal area of Teche-Vermilion Basin. Two of those seven discrete sites should also implement continuous monitoring sites at active USGS platforms (Figure 37, Table 17) for chlorophyll a, DO, salinity, and TSS to capture short-term changes within the basin and draw inference from the discrete measurements. The two sites selected for continuous monitoring help to monitor the water quality conditions of Vermilion Bay as one is located at Cypremort Point and the other is located in the western area of Vermilion Bay. These short-term changes will be useful for documenting the duration of phytoplankton blooms and hypoxic events and for developing statistical relationships between turbidity and TSS. Once an adequate time series of continuous data is available (≥ 3 years), a power analysis could be run to determine whether the sample size is adequate. Bayou Vermilion Preservation Association Long-term Water Quality Project is a non-profit

entity managed by Bayou Vermilion Preservation Association that has also been collecting water quality data (dissolved oxygen, nutrients, turbidity) in the Basin since year 2014 and in year 2019 they are planning to start collecting chlorophyll a data (D. Sagrera, pers. comm.). This complimentary monitoring could also help assess future environmental change in this area.

Five new or proposed sites are necessary to meet the recommended total sample size of seven (Figure 37, Table 17). These sites were selected using the GRTS approach described in the "Natural System Sampling Design" (see Figure 10 for master sample).

There are also 40 CRMS sites within smaller water bodies and canals. This sample size was deemed sufficient for monitoring these water body types. Further, LDEQ also collects some of the water quality parameters on a less frequent basis and does not always sample the entire basin within the same year. As a result, years in which LDEQ does monitor in the Teche-Vermilion Basin will result in an increased sample size and added benefit to the dataset (Table 17).

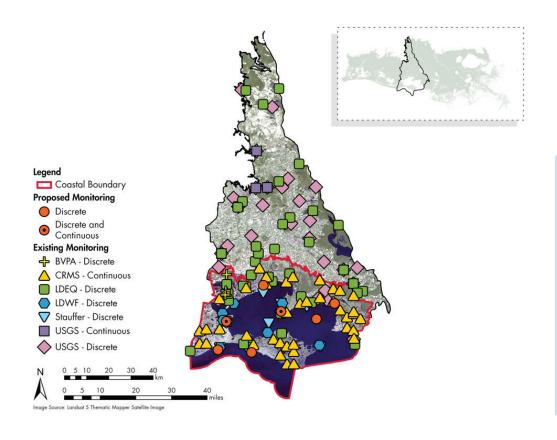


Figure 37. Existing and proposed water quality monitoring sites for Teche-Vermilion Basin.

Discrete measurements of dissolved oxygen, nutrient constituents, turbidity, total suspended solids, and salinity are measured at LDEQ and LDWF sites. Stauffer and Bayou Vermilion Preservation Association (BVPA) sites measure chlorophyll a. Continuous salinity measurements are available at CRMS and USGS sites. Refer to Table 17 for more detailed information on the existing and proposed monitoring sites in Teche-Vermilion Basin.

ATCHAFALAYA BASIN

The results of the power analysis indicate four discrete sites would be adequate to detect small to moderate changes (< 21%) in mean annual chlorophyll a, DO, nutrients, salinity, turbidity, and TSS concentrations from one year to the next in the coastal area of Atchafalaya Basin (Figure 38, Table 18). One of the discrete sites should also be implemented as a continuous monitoring site for chlorophyll a, DO, salinity, and TSS to capture short-term changes within the coastal area of the basin and draw inference from the discrete measurements. The one site selected for continuous monitoring help to assess the shallow receiving areas near Atchafalaya River. These short-term changes will be useful for documenting the duration of phytoplankton blooms and hypoxic events and for developing statistical relationships

between turbidity and TSS. Once an adequate time series of continuous data is available (≥ 3 years), a power analysis could be run to determine whether the sample size is adequate.

Three new or proposed sites are necessary to meet the recommended sample size of four (Figure 38, Table 18) and were selected using the GRTS approach described in the "Natural System Sampling Design" (see Figure 10 for master sample).

There are also 21 CRMS sites within smaller water bodies and canals. This sample size was deemed sufficient for monitoring these water body types. Further, LDEQ also collects some of the water quality parameters on a less frequent basis and does not always sample the entire basin within the same year. As a result, years in which LDEQ does monitor in the Atchafalaya Basin will result in an increased sample size and added benefit to the dataset (Table 18).

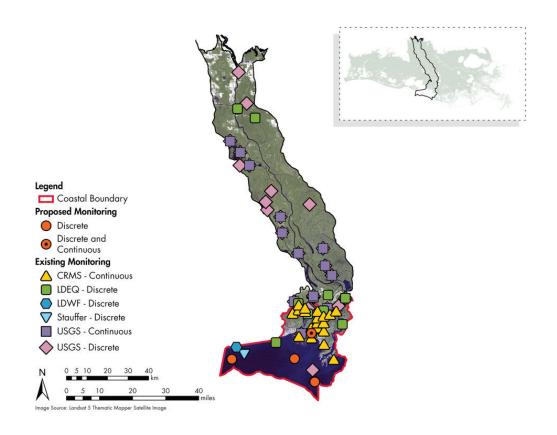


Figure 38. Existing and proposed water quality monitoring sites for Atchafalaya Basin.

Discrete measurements of dissolved oxygen, nutrient constituents, turbidity, total suspended solids, and salinity are measured at LDEQ and LDWF sites. ULL Stauffer sites measure chlorophyll a. Continuous salinity measurements are available at CRMS and USGS sites. Refer to Table 18 for more detailed information on the existing and proposed monitoring sites in Atchafalaya.

TERREBONNE BASIN

The results of the power analysis indicate 15 discrete sites would be adequate to detect small to moderate changes (< 21%) in mean annual chlorophyll a, DO, nutrients, salinity, turbidity, and TSS concentrations from one year to the next in the Terrebonne Basin (Figure 39, Table 19). Seven of those 15 discrete sites should also implement continuous monitoring sites at USGS platforms that collect salinity and can be utilized for chlorophyll a, DO, salinity, and TSS measurements to capture short-term changes within the basin and draw inference from the discrete measurements. The seven sites selected for continuous monitoring are scattered throughout the Terrebonne Basin to help to monitor the water quality conditions of coastal area. These short-term changes will be useful for documenting the duration of phytoplankton blooms and hypoxic events and for developing statistical relationships between turbidity and TSS. Once an adequate time series of

continuous data is available (≥ 3 years), a power analysis could be run to determine whether the sample size is adequate.

Eight new or proposed sites are necessary to meet the recommended sample size of 15 discrete samples (Figure 39, Table 19). The eight new sites were selected using the GRTS approach described in the "Natural System Sampling Design" (see Figure 10 for master sample)..

There are also 76 CRMS sites within smaller water bodies and canals. This sample size was deemed sufficient for monitoring these water body types. Further, LDEQ also collects some of the water quality parameters on a less frequent basis and does not always sample the entire basin within the same year. As a result, years in which LDEQ does monitor in the Terrebonne Basin will result in an increased sample size and added benefit to the dataset (Table 19).

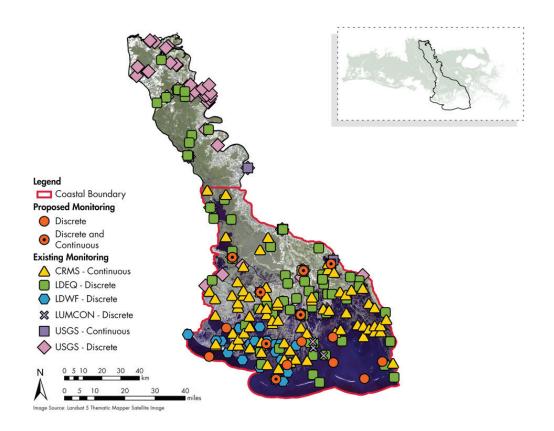


Figure 39. Existing and proposed water monitoring sites for Terrebonne Basin.

Discrete measurements of dissolved oxygen, nutrient constituents, turbidity, total suspended solids, and salinity are measured at LDEQ and LDWF sites. No existing sites measure chlorophyll a. Continuous salinity measurements are available at CRMS, USGS and LUMCON sites. Refer to Table 19 for more detailed information on the existing and proposed monitoring sites in Terrebonne.

BARATARIA BASIN

The results of the power analysis indicate 22 discrete sites would be adequate to detect small to moderate changes (< 20%) in mean annual chlorophyll a, DO, nutrients, salinity, turbidity, and TSS concentrations from one year to the next in the Barataria Basin. The sample size is also sufficient for detecting larger changes (25-40%) on a smaller scale (subbasin) in the Barataria Basin. Six of those 22 discrete sites should also implement continuous monitoring sites for chlorophyll fluorescence, DO, salinity, and TSS to capture short-term changes within the basin and draw inference from the discrete measurements. These shortterm changes will be useful for documenting the duration of phytoplankton blooms and hypoxic events and for developing statistical relationships between turbidity and TSS. Once an adequate time series of continuous data is available (≥ 3 years), a power analysis could be run to determine whether the sample size is adequate.

Three active USGS platforms that collect salinity and one inactive platform can be leveraged for installing continuous sensors of the variables listed above and also used for discrete sampling. Thus,

18 new sites are necessary to meet the recommended sample size of 22, two of which will also be designated as continuous sites (Figure 40, Table 20). The 18 additional sites were selected using the GRTS approach described in the "Natural System Sampling Design" (see Figure 10 for master sample) and thus overlap with other water-based monitoring sites that utilized the master sample (e.g., nekton community composition). The two sites selected for continuous monitoring are located in the southern portion of the basin to maximize spatial coverage and capture the marine influence. An additional continuous station beyond the 22 recommended has also been proposed by CPRA in order to monitor water quality in the vicinity of oyster leases (Table 20).

As previously mentioned, there are also 64 CRMS sites within smaller water bodies and canals. This sample size was deemed sufficient for monitoring these water body types. Further, LDEQ also collects some of the water quality parameters on a less frequent basis and does not always sample the entire basin within the same year. As a result, years in which LDEQ does monitor in the Barataria Basin will result in an increased sample size and added benefit to the dataset (Table 20).

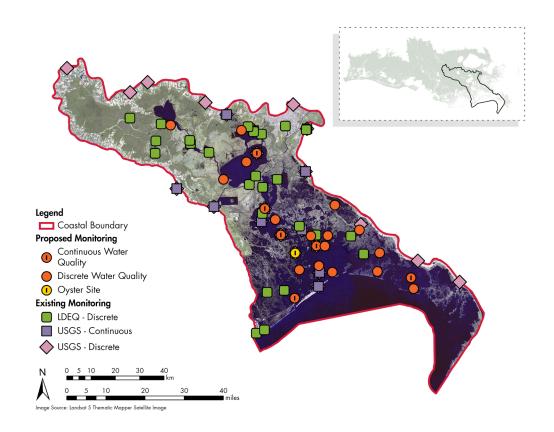


Figure 40. Existing and proposed water quality monitoring sites for Barataria Basin.

PONTCHARTRAIN REGION

The Pontchartrain Region contains a dense network of streams and rivers that influence the water quality dynamics of the region. As a result, the water quality needs for this region expand upon those described for Barataria Basin. Two different datasets representative of streams and marsh habitats that did not overlap in space or time were used to inform the recommended sample size for their respective habitats (see Appendix II), however no dataset was available for evaluating sample sizes within open water bodies, such as lakes. Thus, the analysis for the Pontchartrain Region was hindered by lack of a consistent dataset across the entire region, over multiple years, or across the different water body types (e.g., streams, lakes). To overcome this limitation, two sets of recommendations are provided for the region. First, the analysis of existing data collected within stream and marsh habitats is used to inform sample size estimates for those areas. Secondly, a pilot study is described to improve understanding of the dynamics within open water bodies and determine the long-term monitoring needs for those areas.

ANALYSIS

Given that the existing datasets represent distinct areas within the region and different time periods, an assumption was made that the total sample size could be achieved by adding the sample size estimates from the individual areas analyzed (lower and upper Pontchartrain and Breton basins; Appendix II, Figure 101). Thus, interpretation of the results across all variables and analyses resulted in an estimated sample size of 27 discrete water quality sites within streams or adjacent to marsh shorelines (11 in upper Pontchartrain, seven in lower Pontchartrain, and nine in Breton) in order to detect moderate changes in mean annual chlorophyll a, DO, nutrients, salinity, turbidity, and TSS concentrations (Table 21). The existing LDEQ sites in upper and lower Pontchartrain could serve as the water quality sites for SWAMP if the frequency is increased from a four-year monitoring cycle to an annual monitoring cycle. This would result in a consistent time series of information and reduce the temporal data gaps currently in the dataset. Eleven of the 54 sites in upper Pontchartrain were randomly

selected for the purpose of illustrating the potential distribution of water quality sites across the region (Figure 41). Similarly, for LDEQ's lower Pontchartrain sites, seven of the eight could be reoccupied to meet the estimated sample size requirements for that area (Figure 41). Lastly, for the Breton area, nine sites were selected using the GRTS approach described in the "Natural System Sampling Design" (see Figure 10 for master sample).

PILOT STUDY

A pilot study of the open water bodies within the region should be conducted to evaluate the spatial and temporal variability of water quality conditions. It is challenging to estimate a sample size for these areas, given the paucity of data collection and the uncertainty in spatial variability. As a starting point, the existing fisheries independent monitoring locations (e.g., 16' trawls) that occur within these open water areas could be recopied for the purposes of discrete water quality monitoring to create a baseline of information for these areas. After at least 3 years of data are available, a power analysis could be conducted on those data to determine if the sample size within the open water bodies is appropriate and whether the data are significantly different from those collected within streams and marshes. For illustrative purposes, sites that occur within the open water areas and away from those selected within the marsh habitats were selected from the 16' trawl locations resulting in 6 sites in the Breton and Chandeleur Sounds, 4 sites in Lake Borgne/Mississippi Sound, and 3 sites in Lake Pontchartrain for this proposed pilot study (Figure 41).

For continuous monitoring, there are four existing or inactive platforms from USGS and LUMCON that could be instrumented with additional sensors for water quality monitoring (Figure 41). Establishing new instrumentation in Breton Sound and Chandeleur Sound should also be considered for the purposes of capturing the marine and estuarine exchange and reducing the high uncertainty of this area, as described for the discrete monitoring. A minimum of 4 permanent sites are proposed to capture the longitudinal and latitudinal gradient in this area and overlap with the four discrete sites proposed for the pilot study (Figure 41).

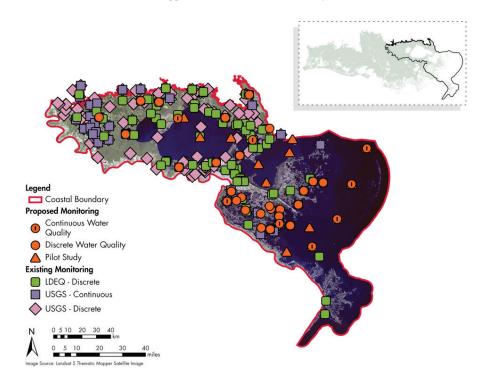


Figure 41. Existing and proposed water monitoring sites for Pontchartrain Region.

HYDROLOGY

Water Levels

Water level refers to the height of the water surface relative to a common datum (e.g., mean sea level, NAVD88, etc.). Shortterm fluctuations in water level occur as a function of tides and weather patterns including cold fronts and tropical events, while long-term climate change contributes to increases in sea level. Astronomical tidal ranges in coastal Louisiana are relatively small (~0.3 m), but strong southerly winds can force water into estuaries and wetlands while northerly winds push water out, causing water levels to fluctuate up to a meter (Inoue et al., 2008; Kemp et al., 1980). Flooding of the marsh surface can result in the accumulation of sediments and organic matter which promotes below- and aboveground biomass production and ultimately results in vertical accretion of the marsh surface (Cahoon et al., 2006; Turner et al., 2002). Excessive flooding, however, may negatively impact vegetation by creating anaerobic conditions, accumulating toxic compounds, and altering nutrient cycling, impacting survival, growth, and productivity (DeLaune et al., 1987; Pezeshki, 2001; Webb & Mendelssohn, 1996). Water level data are currently collected in numerous channels, lakes, bays, ponds, tidal creeks, and bayous adjacent to wetlands as part of CRMS, in select bays and lakes by the USGS, and in some tidal channels reported through the NDBC. Lastly, the results of the salinity power analysis for the western basins can be used to

inform the design of additional water level sites by co-locating them with the discrete water quality sites as suggested for the Barataria Basin and Pontchartrain Region design.

CALCASIEU-SABINE BASIN

Continuous records of water level will support modeling needs as well as research efforts aimed at understanding physical and biological processes in the Calcasieu-Sabine Basin (Figure 42, Table 15). The existing CRMS network is sufficient for characterizing water levels adjacent to wetlands, while the openwater system should be expanded. A total of four continuous sites would be sufficient to provide adequate spatial coverage throughout the basin. This number corresponds to proposed monitoring of continuous salinity changes, as discussed in the Water Quality section. Instruments should be programmed to collect data at a minimum of every hour. In addition to using the GRTS design to help determine the spatial distribution of water level sites, experts advised on locations for additional sites to be added to collect water level, current velocities, and waves (see the next section Waves and Currents). In Calcasieu-Sabine, two areas of primary interest to experts for data collection include both the Sabine River and Sabine L ake on the west side of the basin and Calcasieu River and Calcasieu Lake on the east side of the basin. Additional sensors on the various tributaries and outlets can help characterize the flow patterns in these areas which will help validate hydrodynamic models and inform decision-make related to environmental impacts in the area.

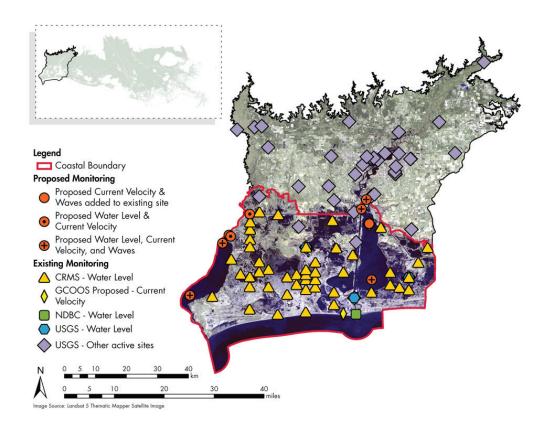


Figure 42. Existing and proposed Calcasieu-Sabine Basin sites for hydrological monitoring.

MERMENTAU BASIN

Continuous records of water level will support modeling needs as well as research efforts aimed at understanding physical and biological processes in the Mermentau Basin (Figure 43, Table 16). The existing CRMS network is sufficient for characterizing water levels adjacent to wetlands, while the open-water system should be expanded. A total of three continuous sites would be sufficient to provide adequate spatial coverage throughout the basin. This number corresponds to proposed monitoring of continuous salinity changes, as discussed in the Water Quality section. Instruments should be programmed to collect data at a

minimum of every hour. In addition to using the GRTS design to help determine the spatial distribution of water level sites, experts advised on locations for additional sites to be added to collect water level, current velocities, and waves. The key areas for improved monitoring in the Mermentau Basin as identified by the experts included the inter-connecting waterways between Grand Lake (west) and White Lake (east) and on the channel outlet draining the Grand Lake into the Gulf. Data gathered will inform numerical models such as the Integrated Compartment Model utilized for Coastal Master Plan and improve our understanding of the water balance across the basin.

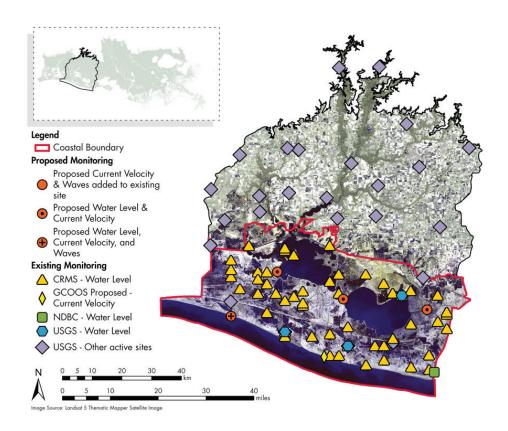


Figure 43. Existing and proposed Mermentau Basin sites for hydrological monitoring.

TECHE-VERMILION BASIN

Continuous records of water level will support modeling needs as well as research efforts aimed at understanding physical and biological processes in the Teche-Vermilion Basin (Figure 44, Table 17). The existing CRMS network is sufficient for characterizing water levels adjacent to wetlands, while the openwater system should be expanded. A total of two continuous sites would be sufficient to provide adequate spatial coverage throughout the basin. This number corresponds to proposed monitoring of continuous salinity changes, as discussed in the Water Quality section. Instruments should be programmed to collect data at a minimum of every hour. In addition to using the

GRTS design to help determine the spatial distribution of water level sites, experts advised on locations for additional sites to be added to collect water level, current velocities, and waves. The key areas for improved monitoring in the Teche-Vermilion Basin as identified by the experts include locations near Vermilion Bay (west) and West Cote Blanche Bay (east). The proposed locations include (1) monitoring the flow split in the Freshwater Bayou and Schooner Bayou where it connects to Vermilion Bay, (2) collect the waves and current velocities where Vermilion Bay and West Cote Blanche Bay connect directly to the Gulf, and (3) monitor the flow split at the Wax Lake Outlet Channel and the GIWW along the eastern border of the basin.

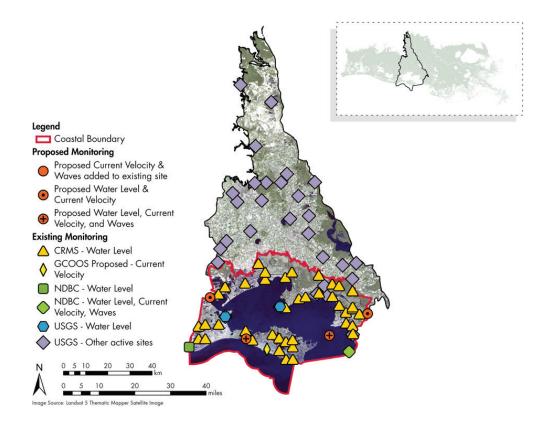


Figure 44. Existing and proposed Teche-Vermilion Basin sites for hydrological monitoring.

ATCHAFALAYA BASIN

Continuous records of water level will support modeling needs as well as research efforts aimed at understanding physical and biological processes in the Atchafalaya Basin (Figure 45, Table 18). The existing CRMS network is sufficient for characterizing water levels adjacent to wetlands, while the monitoring of the openwater should be expanded One continuous site may be sufficient to provide adequate spatial coverage throughout the basin. This

number corresponds to proposed monitoring of continuous salinity changes, as discussed in the Water Quality section. Instruments should be programmed to collect data at a minimum of every hour. In addition to using the GRTS design to help determine the spatial distribution of water level sites, experts advised on locations for additional sites to be added to collect water level, current velocities, and waves. The key areas for improved monitoring in the Atchafalaya as identified by the experts are located at the outlet of the Atchafalaya river into the Gulf.

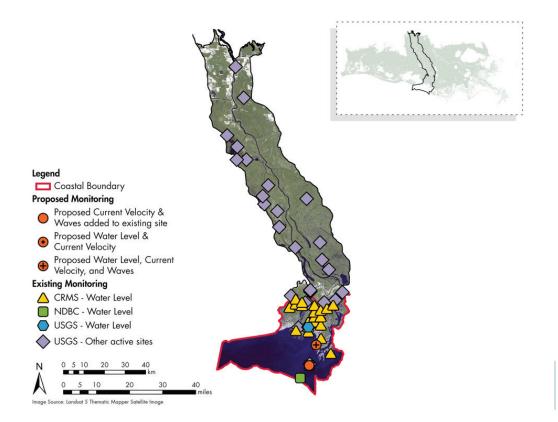


Figure 45. Existing and proposed Atchafalaya Basin sites for hydrological monitoring.

TERREBONNE BASIN

Continuous records of water level will support modeling needs as well as research efforts aimed at understanding physical and biological processes in the Terrebonne Basin (Figure 46, Table 19). The existing CRMS network is sufficient for characterizing water levels adjacent to wetlands, while monitoring the openwater should be expanded. A total of seven continuous sites would be sufficient to provide adequate spatial coverage throughout the basin. This number corresponds to proposed monitoring of

continuous salinity changes, as discussed in the Water Quality section. Instruments should be programmed to collect data at a minimum of every hour. In addition to using the GRTS design to help determine the spatial distribution of water level sites, experts advised on locations for additional sites to be added to collect water level, current velocities, and waves. The key areas for improved monitoring in the Terrebonne Basin identified by experts include the currents and waves between the barrier islands and the water level and discharge along the intercoastal waterway.

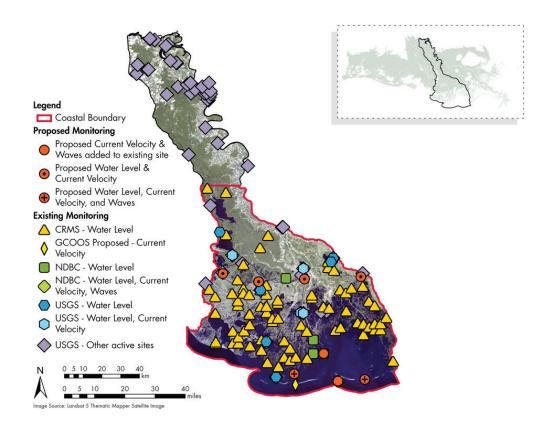


Figure 46. Existing and proposed Terrebonne Basin sites for hydrological monitoring.

BARATARIA BASIN

Continuous records of water level will support modeling needs as well as research efforts aimed at understanding physical and biological processes in the Barataria Basin. The existing CRMS network is sufficient for characterizing water levels adjacent to wetlands, as informed by the power analysis, while the openwater system should be expanded. A total of 15 to 22 permanent sites would be sufficient to provide adequate spatial coverage throughout the basin. This number corresponds to the sample

size required for detecting salinity changes, as discussed in the Water Quality section. At this time, six additional water level recorders are recommended for the Barataria Basin in addition to the nine sites operated by USGS (Figure 47, Table 20). Four sites overlap other water-based monitoring sites proposed in this plan (i.e., water quality and fisheries) and two were manually selected in order to fill spatial gaps in the central and eastern portions of Barataria Bay. Instruments should be programmed to collect data at a minimum of every hour.

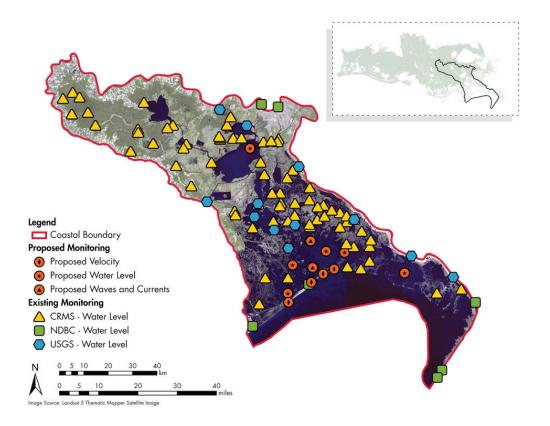


Figure 47. Existing and proposed Barataria Basin sites for hydrological monitoring.

PONTCHARTRAIN REGION

The existing CRMS, USGS, and NDBC monitoring networks provide adequate spatial coverage for much of the Pontchartrain Region (Figure 48; Table 21). The proposed continuous sites for water quality monitoring could also be housed with water level recorders to assist in fulfilling the remaining spatial gaps and to meet the objectives described earlier in the report. As previously described, these would be located in the Breton and Chandeleur sounds and Lake Pontchartrain (Figure 48).

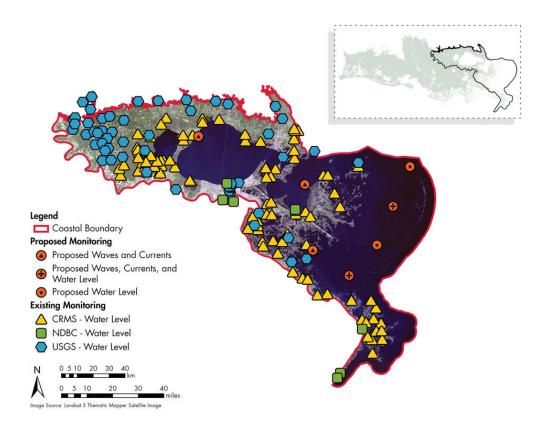


Figure 48. Existing and proposed Pontchartrain Region sites for hydrological monitoring.

Waves and Currents

Wind-generated waves in the nearshore coastal environment contribute to the resuspension and transport of bed materials and are a main causative agent for marsh edge erosion in coastal Louisiana (Booth et al., 2000; Trosclair, 2013; Watzke, 2004). Wave generation is a function of fetch, such that presence of emergent vegetation and other landforms can strongly limit the maximum wave heights (Fagherazzi & Wiberg, 2009). The expansion of open water bodies due to subsidence and erosional processes could lead to higher-energy waves, which in turn could contribute to morphological and ecological changes in the estuary. For instance, wave-induced marsh edge erosion results in the release of significant quantities of sediment and organic matter back into the water column, potentially impacting biogeochemical cycles in estuaries and the adjacent continental shelf (Wilson & Allison, 2008). Typical nearshore wave heights in coastal Louisiana vary from 0.07 m to 0.8 m, with heights up to 2 m reported during cold-fronts and tropical cyclones (Georgiou et al., 2005), although data are sparsely available. Waves are typically characterized by their height, period, and direction, which can be used to calculate additional metrics such as wave power.

Circulation patterns in coastal water bodies of Louisiana are also driven in part by currents. Inlet currents are influenced by tides and winds, among other factors, and contribute significantly to the flow and exchange of freshwater, nutrients, sediments, and organic material between the Gulf of Mexico and estuaries. Further, current velocity measurements in conjunction with wave measurements in open water bodies will also help determine critical shear stress for remobilizing bay bottom sediments. Given that current velocities often change direction due to tides or seasonal flow patterns, temporally averaged values are typically needed to estimate the net movement of water and sediment. Expert knowledge from scientists at CPRA and the Institute provided recommendations for the site locations to monitor waves and currents. It is also important to note that from these discussions it was realized that one to three-year project studies could help better understand the current velocities and discharge rates in critical conduits of water, such as the Gulf Intracoastal Waterway and at the intersection of tributaries in the northern regions of Sabine and Calcasieu Lakes. These studies could inform the monitoring of significant flow paths of water in coastal Louisiana.

CALCASIEU-SABINE BASIN

Continuous records of wave heights and directions along a transect are recommended in order to evaluate the propagation of waves into the basin. Wave instruments that also measure current velocities are preferred as this would also allow for deconvolving the wave versus current boundary layer effects that erode sediment from the bay floor. Wave sites would also enable examination of increases in wave power, due to increase in fetch, and the interaction between waves and marsh edge erosion. New sites that include both waves (six) and current velocity (eight) were selected to take advantage of existing platforms and instrumentation (Figure 42, Table 15). Additional wave sites could be implemented as part of a rapid response program to respond to extreme weather, oil spills, or other events that warrant larger spatial coverage of wave data.

MERMENTAU BASIN

Continuous records of wave heights and directions along a transect are recommended in order to evaluate the propagation of waves into the basin. Wave instruments that also measure current velocities are preferred as this would also allow for deconvolving the wave versus current boundary layer effects that erode sediment from the bay floor. Wave sites would also enable examination of increases in wave power, due to increase in fetch, and the interaction between waves and marsh edge erosion. Proposed sites that include both waves (one) and current velocity (four) were selected preferentially along a transect that extended from offshore into and takes advantage of existing platforms and instrumentation (Figure 43, Table 16).

TECHE-VERMILION BASIN

Proposed sites that include both waves (four) and current velocity (two) were selected preferentially along a transect that extended from offshore into and takes advantage of existing platforms and instrumentation (Figure 44, Table 17) additional wave sites could be implemented as part of a rapid response program to respond to extreme weather, oil spills, or other events that warrant larger spatial coverage of wave data. Quantifying the transport of waterborne materials through inlets and exchange points are of critical importance, particularly in the modeling context. High-resolution measurements in these inlets could also help meet the modeling needs of the Coastal Master Plan Integrated Compartment Model by establishing boundary conditions and quantifying exchange points.

ATCHAFALAYA BASIN

One proposed site is suggested to include both waves and current velocity were selected (Figure 45, Table 18). Additional wave sites could be implemented as part of a rapid response program to respond to extreme weather, oil spills, or other events that warrant larger spatial coverage of wave data.

TERREBONNE BASIN

Continuous records of wave heights and directions along a transect are recommended in order to evaluate the propagation of waves into the basin. Wave instruments that also measure current velocities are preferred as this would also allow for deconvolving the wave versus current boundary layer effects that erode sediment from the bay floor. Wave sites would also enable examination of increases in wave power, due to increase in fetch, and the interaction between waves and marsh edge erosion. New or proposed sites that include both waves (four) and current velocity (eight) were selected preferentially along a transect that extended from offshore into and takes advantage of existing platforms and instrumentation (Figure 46, Table 19) additional wave sites could be implemented as part of a rapid response program to respond to extreme weather, oil spills, or other events that warrant larger spatial coverage of wave data. The transport of waterborne materials through these inlets and exchange points are of critical importance, particularly in the modeling context. High-resolution measurements in these inlets can meet the modeling needs of establishing boundary conditions and quantifying exchange points.

BARATARIA BASIN

At the time of this basin monitoring design, there were no active monitoring sites collecting wave measurements in the Barataria Basin. As a result, continuous records of wave heights and directions along a transect are recommended in order to evaluate the propagation of waves into the basin. Wave instruments that also measure currents are preferred as this would also allow for deconvolving the wave versus current boundary layer effects that erode sediment from the bay floor. Wave sites within Barataria Bay would also enable examination of increases in wave power, due to increase in fetch, and the interaction between waves and marsh edge erosion. Sites were selected preferentially along a transect that extended from offshore into Barataria Bay and takes advantage of existing platforms and instrumentation (Figure 47, Table 20). There are USGS platforms adjacent to the two northern wave transects proposed and these may serve as an option for installing the wave and current instrumentation. Two existing monitoring sites exist offshore, WAVCIS station CSI09 and Louisiana Offshore Oil Port station LOPL1, although it is unclear whether these will be maintained in the long-term. Further, additional wave sites could be implemented as part of a rapid response program to respond to extreme weather, oil spills, or other events that warrant larger spatial coverage of wave data. Rapid relative sea level rise and erosional processes have increased Barataria Bay's tidal prism and tidal exchange, subsequently leading to an increase in the cross-sectional area of major tidal inlets (Georgiou et al., 2005). As a result, quantifying the transport of waterborne materials through these inlets is of critical importance, particularly in the modeling context. Highresolution measurements in these inlets can meet the modeling needs of establishing boundary conditions and quantifying exchange points.

PONTCHARTRAIN REGION

At the time of this report, there were no active monitoring sites collecting wave measurements in the Pontchartrain Region. One existing monitoring site exists offshore, east of the Chandeleur Islands (Figure 48), although it is unclear whether this site will be maintained in the long-term. Monitoring the wave climate of the Pontchartrain Region poses a logistical challenge given the large size of the region and number of major water bodies (i.e., Breton Sound, Chandeleur Sound, Lake Borgne, and Lake Pontchartrain). As a result, a systematic approach is needed to target areas where wave climate exhibits highest uncertainties, and modeling efforts can most benefit from enhanced data collection. Five sites were identified as potential wave monitoring locations (Figure 48, Table 21). First, Breton Basin is an area where large-scale restoration projects are currently under consideration in the Coastal Master Plan. Thus, two sites were selected in Breton Basin: one on an existing USGS platform adjacent to the Breton marshes and one within Breton Sound. This would enable evaluating the propagation of waves into the basin, marsh edge erosion processes, and the potential increase in wave power if marshes are converted to open water over time. Secondly, modeling wave propagation and dissipation characteristics across barrier islands or other topographic features and shallow water bodies remain a challenge in many modeling applications (Dietrich et al., 2011). To address this challenge, sites within Chandeleur Sound, Lake Borgne, and Lake Pontchartrain were identified (Figure 48). Finally, it is also recommended that additional wave sites be implemented as part of a rapid response program to fill gaps in other areas and to respond to extreme weather, oil spills, or other events that warrant larger spatial coverage of wave data, as has been done for hurricanes in the past (Dietrich et al., 2011).

PHYSICAL TERRAIN

Geophysical and Bathymetric Surveys

Bathymetry is the study of underwater depth of lake, bays, or ocean floors. Bathymetric data are fundamental for understanding the geomorphologic configuration of the basin or water body. Historically these data were not collected on basin scale. Bathymetric data are needed to resolve long-term (5-10 years) and storm-driven morphological evolution trends, although more frequent measurements (annual) may be needed for dynamic areas (e.g., select tidal passes or channels that are dredged on a regular basis) to capture effects of storms and other short-term changes. Bathymetry information is important for setting up numerical model grids for hydrodynamic, sediment transport, and land-building models. Bathymetry data are not systematically collected within estuarine open water bodies, although these data are sporadically collected in individual water bodies to meet specific project and modeling needs. Bathymetry data can also be useful to characterize the benthic substrate to infer hard bottom for oyster suitability. Bathymetry data are also collected regularly around barrier islands as part of the Barrier Island Comprehensive Monitoring Program (BICM).

CALCASIEU-SABINE BASIN

The monitoring design for bathymetry surveys was modified from the original design developed for the Barataria Basin and Pontchartrain Region in order to be more cost effective while still maintaining the desired resolution. As such, the track lines are recommended to be at 3000 ft line spacing within the Tier 2 oyster seed grounds. Tier 2 grounds are productive grounds that require side scan sonar and sub-bottom profiling data at 3000 ft line spacing in order to better delineate potential oyster resources and other partially buried or buried hard bottom that may be conducive to oyster seeding. Tier 3 seed grounds have shown to be unproductive grounds and therefore no geophysical survey is needed/proposed to identify oyster resources or potential hard bottom. Bathymetric survey along track lines at 6000 ft spacing are recommended within the Tier 3 oyster seed grounds. The seafloor is expected to be relatively uniform in morphology and thus balancing cost versus data needs resulted in 6000 ft spacing that provides general bathymetric conditions of the basin. These bathymetric data are intended for restoration needs and should not be used for navigation (Figure 49, Table 15).

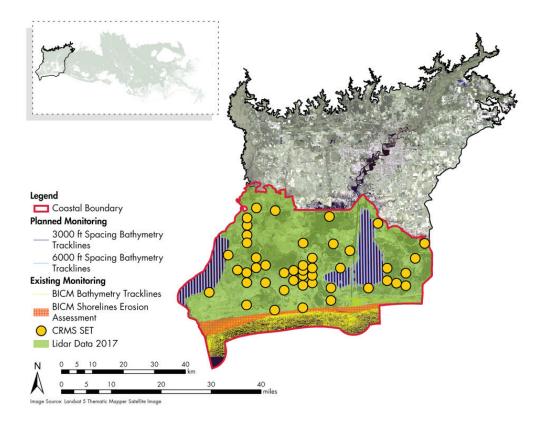


Figure 49. Calcasieu-Sabine site locations for measuring surface elevation and bathymetry, including existing site surveys conducted through BICM and CRMS programs.

MERMENTAU BASIN

The monitoring design for bathymetry surveys was modified from the original design developed for the Barataria Basin and Pontchartrain Region in order to be more cost effective while still maintaining the desired resolution. As such, the track lines are recommended to be at 3000 ft line spacing in order to better delineate potential oyster resources and other partially buried or buried hard bottom that may be conducive to oyster seeding. Tier 3 seed grounds have shown to be unproductive grounds and

therefore no geophysical survey is needed/proposed to identify oyster resources or potential hard bottom. Bathymetric survey along track lines at 6000 ft spacing are recommended within the Tier 3 oyster seed grounds. The seafloor is expected to be relatively uniform in morphology and thus balancing cost versus data needs resulted in 6000 ft spacing that provides general bathymetric conditions of the basin. These bathymetric data are intended for restoration needs and should not be used for navigation (Figure 50, Table 16).

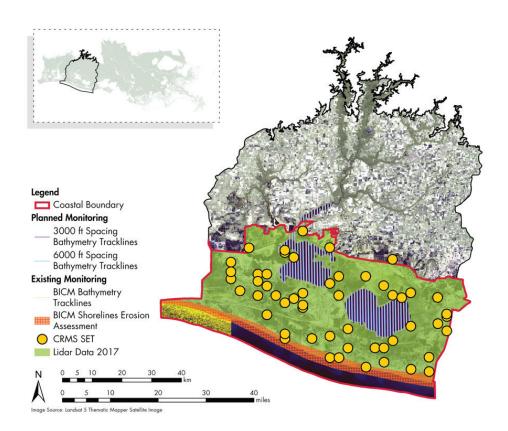


Figure 50. Mermentau
Basin site locations for
measuring surface elevation
and bathymetry, including
existing site surveys
conducted through BICM
and CRMS programs.

TECHE-VERMILION BASIN

The monitoring design for bathymetry surveys was modified from the original design developed for the Barataria Basin and Pontchartrain Region in order to be more cost effective while still maintaining the desired resolution. As such, the track lines are recommended to be at at 3000 ft line spacing in order to better delineate potential oyster resources and other partially buried or buried hard bottom that may be conducive to oyster seeding. Tier 3 seed grounds have shown to be unproductive grounds and

therefore no geophysical survey is needed/proposed to identify oyster resources or potential hard bottom. Bathymetric survey along track lines at 6000 ft spacing are recommended within the Tier 3 oyster seed grounds. The seafloor is expected to be relatively uniform in morphology and thus balancing cost versus data needs resulted in 6000 ft spacing that provides general bathymetric conditions of the basin. These bathymetric data are intended for restoration needs and should not be used for navigation (Figure 51, Table 17).

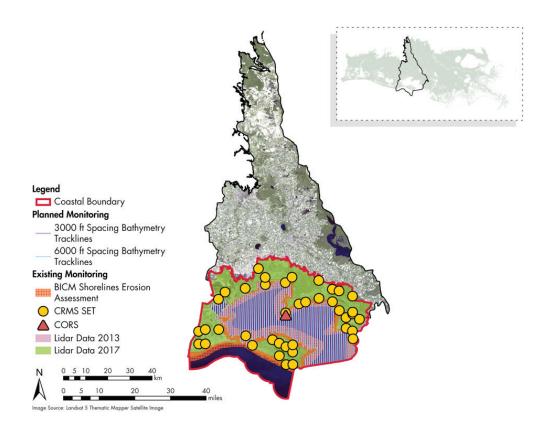


Figure 51. Teche-Vermilion Basin site locations for measuring surface elevation and bathymetry, including existing site surveys conducted through BICM and CRMS programs.

CORS site locations are approximate and under development by NOAA.

ATCHAFALAYA BASIN

The monitoring design for bathymetry surveys was modified from the original design developed for the Barataria Basin and Pontchartrain Region in order to be more cost effective while still maintaining the desired resolution. As such, the track lines are recommended to be at 3000 ft line spacing within the Tier 2 oyster seed grounds. Tier 2 grounds are productive grounds that require side scan sonar and sub-bottom profiling data at 3000 ft line spacing in order to better delineate potential oyster resources and other partially buried or buried hard bottom that

may be conducive to oyster seeding. Tier 3 seed grounds have shown to be unproductive grounds and therefore no geophysical survey is needed/proposed to identify oyster resources or potential hard bottom. Bathymetric survey along track lines at 6000 ft spacing are recommended within the Tier 3 oyster seed grounds. The seafloor is expected to be relatively uniform in morphology and balancing cost versus data needs 6000 ft spacing provides general bathymetric conditions of the basin. These bathymetric data are intended for restoration needs and should not be used for navigation (Figure 52, Table 18).

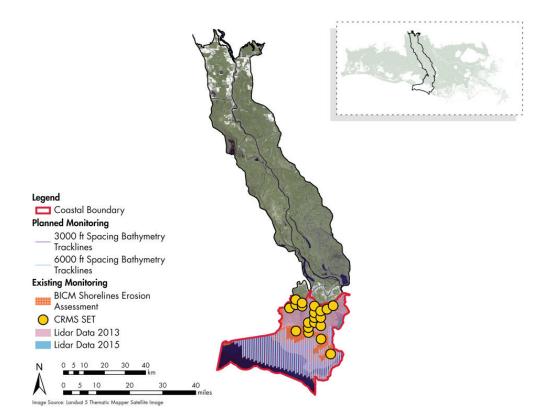


Figure 52. Atchafalaya Basin site locations for measuring surface elevation and bathymetry, including existing site surveys conducted through BICM and CRMS programs.

TERREBONNE BASIN

The monitoring design for bathymetry surveys was modified from the original design developed for the Barataria Basin and Pontchartrain Region in order to be more cost effective while still maintaining the desired resolution. As such, the track lines are recommended to be at 3000 ft line spacing within the Tier 2 oyster seed grounds. Tier 2 grounds are productive grounds that require side scan sonar and sub-bottom profiling data at 3000 ft line spacing in order to better delineate potential oyster resources and other partially buried or buried hard bottom that may be conducive to oyster seeding. Tier 3 seed grounds have shown to be unproductive grounds and therefor no geophysical survey is needed/proposed to identify oyster resources or potential hard bottom. Bathymetric survey along track lines at 6000 ft spacing are recommended within the Tier 3 oyster seed grounds. The seafloor is expected to be relatively uniform in morphology and balancing

cost versus data needs 6000 ft spacing provides general bathymetric conditions of the basin. These bathymetric data are intended for restoration needs and should not be used for navigation.

Survey operations were initiated in July of 2018 and included the collection of bathymetry, sidescan sonar, sub-bottom, magnetometer, and poling data with the Terrebonne Basin (Figure 53, Table 19). All coordinates are in U.S. Survey Feet, relative to the North American Datum (NAD) 1983/2011, Louisiana State Plane Coordinate System, South, Geoid 2012B. Elevations are presented in U.S. Survey Feet, relative to the North American Vertical Datum (NAVD) 1988 relative to geoid model 12a. The total estimated line-miles of survey for remaining western basins is approximately 1361 nautical miles, of which 1001 nautical miles are proposed to be for geophysical survey (at 3000 ft spacing) in the Tier 2 seed grounds and the remaining 360 nautical miles are proposed to be only for Tier 3 seed grounds bathymetric survey (at 6000 ft spacing).

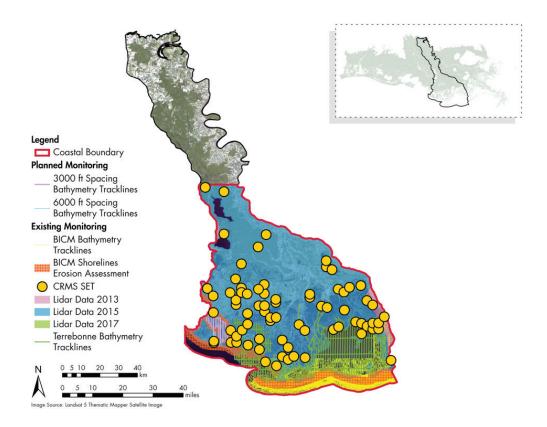


Figure 53. Terrebonne
Basin site locations for
measuring surface elevation
and bathymetry, including
existing site surveys
conducted through BICM
and CRMS programs.

BARATARIA BASIN

The dynamic and detailed geomorphology of waterbody features that are complex and rapidly evolving (e.g., tidal inlets and ebb/flood tide deltas) are best represented with a 100% coverage multibeam survey. Changes in the inlet throat geometry, ebb deltas, and flood deltas are interrelated and provide an insight into the change in the whole basin, into local hydrodynamic regime, and also into littoral sediment availability and dynamics. Their potential expansion with sea level rise and/or storms, by increasing tidal prism in Barataria Bay, would also cause profound alteration to basin ecological and physical evolution. This 100% coverage bathymetry is feasible as these areas are relatively limited in spatial extent compared to the overall Barataria Basin submerged areas. It is suggested that repeat surveys at these

locales punctuate the generalized survey scheme at shorter intervals. In the remaining Barataria Basin, planned survey lines were drawn and are of two categories: channel lines and bay lines (Figure 54, Table 20). Regularly spaced (1000 m) transects across open water bodies (bay lines) are suggested. Complete (100%) coverage is not feasible due to the cost of the survey time required. The channel lines follow discreet waterways that are known or appear to be navigable from aerial imagery. As such, they are thought to be significant conduits for water flow. Single-track surveys down each canal axis is suggested given their limited lateral extent and variability in water depth. The actual 'channels' surveyed may require adjustments after encountering field conditions. In any case, the lines surveyed at the outset of the monitoring should be reoccupied in subsequent surveys to account for change.

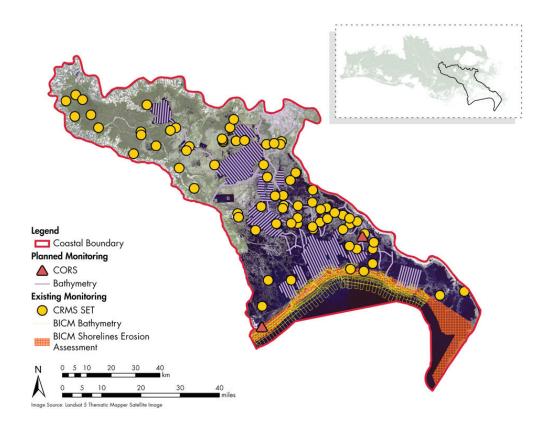


Figure 54. Barataria
Basin site locations for
measuring surface elevation
and bathymetry, including
existing site surveys
conducted through BICM
and CRMS programs.

CORS site locations are approximate and under development by NOAA.

PONTCHARTRAIN REGION

Given the large size of the Pontchartrain Region, strategic placement of bathymetric survey lines was needed in order to maximize coverage while also retaining a spatial resolution appropriate for modeling applications. For lakes Maurepas, Pontchartrain, and Borgne, bay lines are spaced proportionally to the overall size of the lakes, ranging from 5 km to 8 km (Figure 55, Table 21). For open water bays and lakes that are adjacent to or interspersed within the fragmented marsh of Breton Basin, spacing was reduced to 1 km to capture the elevation change that occurs from open water to marsh. The channel lines follow discreet waterways that are known or appear to be navigable from aerial imagery. As such, they are thought to be significant

conduits for water flow. Single-track multibeam down each canal axis is suggested given their limited lateral extent and variability in water depth. The actual channels surveyed may require adjustments after encountering field conditions. In any case, the lines surveyed at the outset of the monitoring should be reoccupied in subsequent surveys to account for change. Survey lines were not placed in Breton and Chandeleur sounds as those areas are periodically monitored by NOAA, although the date of the most recent survey for those areas is currently unknown. Additional detailed project-specific monitoring was conducted recently (2014/2015) in Breton Basin, as indicated in orange in Figure 55, and is shown to illustrate how the basinwide monitoring can be supplemented with project specific efforts.

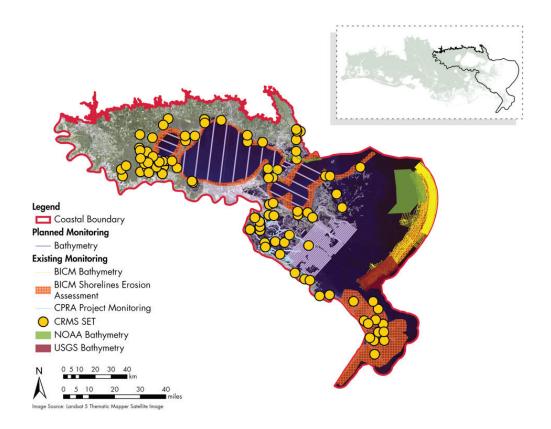


Figure 55. Pontchartrain Region site locations for measuring surface elevation and bathymetry, including existing site surveys conducted through BICM and CRMS programs and other CPRA project-specific monitoring.

CORS site locations are approximate and under development by NOAA.

Land Area

Land in the context of SWAMP refers to the area of natural landscape features (e.g., marshes, forests, barrier islands). Change in land and water area over time reflects both land gain and the conversion to open water. The natural landscape serves a multitude of functions such as buffering storms, filtering nutrients, pollutants, and sediments, and supporting a variety of fauna. As a result, severe land loss threatens all aspects of the coastal ecosystem, from increasing fetch in open-water bodies to reducing habitat for ecologically important fish and wildlife.

WESTERN BASINS

As part of the CRMS program, Color InfraRed (CIR) aerial digital orthophoto imagery, 1 m resolution, is acquired for assessment of changes in land and water distribution at CRMS sites (Folse et al., 2018). CRMS also uses 30 m resolution Landsat TM imagery to estimate land change rates at the regional and coastwide scale. In concert with these efforts, the U.S. Geological Survey conducts landscape analysis to look at land cover changes and document land loss (Couvillion et al., 2017) that covers the western basin monitoring area (Figure 49 to Figure 53, Table 15 to Table 19).

BARATARIA BASIN

As part of the CRMS program, satellite imagery (e.g., Landsat TM multi-spectral imagery) is acquired every three years for regional assessment of changes in land and water distribution (Folse et al., 2008). In concert with these efforts, the U.S. Geological Survey conducts landscape analysis to look at land cover changes and document land loss (Couvillion et al., 2017) in the Barataria Basin monitoring area defined here (Figure 54, Table 20). Continued support to these programs is recommended in order to document land use and land cover changes over time and supplement the wetland community composition monitoring variable, discussed under the biotic integrity category.

PONTCHARTRAIN REGION

As part of the CRMS program, Color InfraRed (CIR) aerial digital orthophoto imagery is acquired every three years for assessment of changes in land and water distribution at CRMS sites (Folse et al., 2008). CRMS also uses 30 m resolution Landsat TM imagery to estimate land change rates at the regional and coastwide scale. In concert with these efforts, the U.S. Geological Survey conducts landscape analysis to look at land cover changes and document land loss (Couvillion et al., 2017) that covers the Pontchartrain Region monitoring area defined here (Figure 55, Table 21). Continued support to these programs is recommended in order to document land use and land cover changes over time and supplement the wetland community composition monitoring variable, discussed under the biotic integrity category.

Surface Elevation

Surface elevation refers to the height of the land surface relative to a vertical datum (e.g., mean sea level, NAVD88, etc.). The relatively flat topographic setting and high subsidence rates in coastal Louisiana make it particularly vulnerable to sea-level rise, which threatens large extents of coastal marshes and freshwater swamps. Long-term rates of surface elevation vary in response to sediment supply (French, 2006), sea-level rise (Kirwan et al., 2010), and localized drivers of physical (Cahoon et al., 2011) and biogenic (McKee et al., 2011) subsurface dynamics that vary among wetland type (Stagg et al., 2016). Temporal patterns of subsidence suggest that subsurface fluid withdrawal may be an important driver in some regions (Kolker et al., 2011), but numerous processes influence regional subsidence rates including underlying tectonic movement, Holocene sediment compaction, sediment loading, glacial isostatic adjustment, and surface water drainage and management (Yuill et al., 2009).

Light detecting and ranging (LIDAR) data provide the best available method to obtain elevations over large spatial extents, although the vertical accuracy of these data (non-vegetated area with vertical accuracy of 19.6 cm to 39.2 cm at 95% confidence level with vegetated areas having larger values; J. Barras personal communication, June 2015) prevents their use for monitoring small elevation changes (Arundel et al. 2015). While some spatial maps of deep subsidence rates across the deltaic plain have been developed, they are largely based upon expert knowledge (CPRA, 2017) or relatively few data points (Karegar et al., 2015) and could be improved to guide restoration and modeling. Significant effort has been made in recent years to quantify rates of wetland surface elevation change. Three methods are presently being utilized coast-wide: long-term tide gauges, Global Navigation Satellite System (GNSS) data (Continuously Operating Reference Stations, CORS), and rod surface elevation table- marker horizon systems(RSET-MH) at CRMS sites. Extending measurements of surface elevation change to subaqueous shallow water bodies is recommended using the CORS real time sites. Future CORS deployments could be installed to depths optimized by modeling and examination of existing subsidence data.

WESTERN BASINS

As part of SWAMP Implementation, CPRA also acquires regional airborne Lidar data for the western basins (Figure 49 to Figure 53, Table 15 to Table 19). These data improve baseline elevation data by providing current, standardized, high resolution elevation coverage of coastal Louisiana for use by CPRA planners, engineers, and modelers. It scales up to meet Coastal Master Plan modeling requirements while providing the higher resolution required for local and sub-basin restoration and flood risk reduction project development, implementation, and monitoring (CPRA, 2017). CPRA partnered with the U.S. Geological Survey (USGS) via its Coastal and Marine Geology Program (CMGP) as the USGS is the national leader with respect to regional Lidar acquisition. In 2017, the USGS has acquired Quality Level 2 (QL2) Lidar data of the Louisiana Chenier Plain region, which includes approximately 2,898 sq. miles of the Chenier Plain, part of the western basins in coastal Louisiana. There is only one CORS station under development in the western coastal area of Teche-Vermilion Basin (Figure 51), however, most CRMS sites within the western basins contain an SET (Figure 49, Figure 50, Figure 52, Figure 53).

BARATARIA BASIN

As part of the CRMS program, satellite imagery (e.g., Landsat TM multi-spectral imagery) is acquired every three years for regional assessment of changes in land and water distribution (Folse et al., 2008). In concert with these efforts, the U.S. Geological Survey conducts landscape analysis to look at land cover changes and document land loss (Couvillion et al., 2011) in the Barataria Basin monitoring area defined here (Figure 54, Table 20). Continued support to these programs is recommended in order to document land use and land cover changes over time and supplement the wetland community composition monitoring variable, discussed under the biotic integrity category.

PONTCHARTRAIN REGION

As part of the CRMS program, Color InfraRed (CIR) aerial digital orthophoto imagery is acquired every three years for assessment of changes in land and water distribution at CRMS sites (Folse et al., 2008). CRMS also uses 30 m resolution Landsat TM imagery to estimate land change rates at the regional and coastwide scale. In concert with these efforts, the U.S. Geological Survey conducts landscape analysis to look at land cover changes and document land loss (Couvillion et al., 2017) that covers the Pontchartrain Region monitoring area defined here (Figure 55, Table 21). Continued support to these programs is recommended in order to document land use and land cover changes over time and supplement the wetland community composition monitoring variable, discussed under the biotic integrity category.

Table 15. Recommended sample sizes for the Calcasieu-Sabine Basin natural system monitoring plan within the coastal boundary (see Figure 35).

MONITORING	VADIABLE	EXISTING MONITORING IN CALCASIEU-SABINE BASIN		NEW SITES FOR CALCASIEU-SABINE BASIN		SAMPLE SIZE METHOD	CITE CELECTION METHOD
CATEGORY	VARIABLE	NUMBER OF SITES	SAMPLING FREQUENCY	NUMBER OF ADDITIONAL SITES	SAMPLING FREQUENCY	SAMPLE SIZE METHOD	SITE SELECTION METHOD
Weather and Climate	Potential Evapo-transpiration	Calculated, not measured directly.					
	Precipitation	Gridded datasets from NOAA	Sub-hourly	2	Sub-hourly	Expert knowledge	Utilize existing platforms
	Wind	2 sites plus gridded datasets from NOAA	Sub-hourly	2	Sub-hourly	Expert knowledge	Utilize existing platforms
Biotic Integrity	Nekton Community Composition	10 gillnet, 12 trawl (16'), 10 seine sites	Variable: weekly to monthly	2 gillnet, 2 seine sites	Monthly	Power Analysis; Verified with LDWF	GRTS; Verified with LDWF
	Oyster biomass	22 square meter and 20 dredge sites	Monthly combined square meter and dredge	None	N/A	Expert Knowledge	Should conduct periodic oyster mapping at sites
	Soil condition	CPRA: 46 herbaceous wetlands	Once every ten years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation biomass	CPRA: 23	Once every five years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation community composition	CPRA: 46 herbaceous wetlands	Annually	None	N/A	Expert knowledge	Utilize existing CRMS sites
Water Quality	Chlorophyll a	No existing sites	N/A	9	Monthly	Power Analysis	GRTS
				4 on existing platforms	Sub-hourly	Expert knowledge	
	Dissolved oxygen	LDEQ: 8 LDWF: 10	LDEQ: Monthly, every four years LDWF: variable	9	Monthly	Power Analysis	GRTS
				4 on existing platforms	Sub-hourly	Expert knowledge	
	Nutrient constituents	LDEQ: 8 LDWF: 10	LDEQ: Monthly, every four years LDWF: variable	9	Monthly	Power Analysis	GRTS
	Salinity	USGS: 2 CPRA: 48 LDEQ: 8 LDWF: 10	USGS and CPRA: Hourly LDEQ: Monthly, every four years LDWF: variable	9 discrete sampling locations	Monthly	Power Analysis	GRTS
	Turbidity	LDEQ: 8 LDWF: 10	LDEQ: Monthly, every four years LDWF: variable	9	Monthly	Power Analysis	GRTS
				4 on existing platforms	Sub-hourly	Expert Knowledge	
	Total Suspended Solids	LDEQ: 8 LDWF: 10	LDEQ: Monthly, every four years LDWF: variable	9	Monthly	Power Analysis	GRTS
Hydrology	Current Velocity	GCOOS (planned): 1	Hourly	8 new sites, 1 on existing platform	Hourly	Expert Knowledge	Expert Knowledge
	Water level	CRMS: 48 USGS: 2 NDBC: 1	Hourly	8 new sites	Hourly	Expert Knowledge	Expert Knowledge
	Waves	None	N/A	6 new sites, 1 on existing platform	Hourly	Expert Knowledge	Expert Knowledge
Physical Terrain	Bathymetry	CPRA: Barrier islands (BICM)	BICM every 5-10 years	Tidal inlets; regularly spaced transects in open water bodies; single-track multibeam down canals	Variable (annual to decadal)	Expert Knowledge	Expert Knowledge
	Land Area	CPRA: 46 CRMS	3-5 years	None	N/A	Expert Knowledge	None
	Surface Elevation	CPRA: 46 CRMS	Semiannually	None	N/A	Expert Knowledge	None

Table 16. Recommended sample sizes for the Mermentau Basin natural system monitoring plan within the coastal boundary (see Figure 36).

MONITORING		EXISTING MONITORING IN MERMENTAU BASIN		NEW SITES FOR MERMENTAU BASIN		CAMBIE CITE METHOD	
CATEGORY	VARIABLE	NUMBER OF SITES	SAMPLING FREQUENCY	NUMBER OF ADDITIONAL SITES	SAMPLING FREQUENCY	SAMPLE SIZE METHOD	SITE SELECTION METHOD
Weather and Climate	Potential Evapo-transpiration	Calculated, not measured directly.					
	Precipitation	2 sites and gridded datasets from NOAA	Sub-hourly	2	Sub-hourly	Expert knowledge	Utilize existing platforms
	Wind	1 site plus gridded datasets from NOAA	Sub-hourly	2	Sub-hourly	Expert knowledge	Utilize existing platforms
Biotic Integrity	Nekton Community Composition	3 (16′) trawl sites	Variable: Weekly to monthly	None	N/A	Expert knowledge	Utilize existing LDWF sites
	Oyster biomass	None	N/A	None	N/A	Expert knowledge	Utilize existing LDWF sites
	Soil condition	CPRA: 53 herbaceous wetlands	Once every ten years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation biomass	CPRA: 24	Once every five years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation community composition	CPRA: 53 herbaceous wetlands	Annually	None	N/A	Expert knowledge	Utilize existing CRMS sites
Water Quality	Chlorophyll a	ohyll a No existing sites	N/A	15	Monthly	Power Analysis	GRTS
				3 on existing platforms	Sub-hourly	Expert Knowledge	
	Dissolved oxygen	LDEQ: 8 LDWF: 5	LDEQ: Monthly, every four years	15 Monthly	Monthly	Power Analysis	GRTS
			LDWF: variable	3 on existing platforms	Sub-hourly	Expert Knowledge	
	Nutrient constituents	LDEQ: 8 LDWF: 5	LDEQ: Monthly, every four years LDWF: variable	15	Monthly	Power Analysis	GRTS
	Salinity	CPRA: 54 LDEQ: 8 LDWF: 5	CPRA: Hourly LDEQ: Monthly, every four years LDWF: variable	15 discrete sampling locations	Monthly	Power Analysis	GRTS
	Turbidity LDEQ: 8 LDWF: 5		LDEQ: Monthly, every four years	15	Monthly	Power Analysis	GRTS
		LDWF: variable	3 on existing platforms	Sub-hourly	Expert Knowledge		
	Total Suspended Solids	LDEQ: 8 LDWF: 5	LDEQ: Monthly, every four years LDWF: variable	15	Monthly	Power Analysis	GRTS
Hydrology	Current Velocity	GCOOS (planned): 1	Sub-hourly	4 new sites	Hourly	Expert Knowledge	Expert Knowledge
	Water level	CRMS: 55 USGS: 3 NDBC: 1	Hourly	4 new sites	Hourly	Expert Knowledge	Expert Knowledge
	Waves	None	N/A	1 new site	Hourly	Expert Knowledge	Expert Knowledge
Physical Terrain	Bathymetry	CPRA: Barrier islands (BICM)	BICM every 5-10 years	Tidal inlets; regularly spaced transects in open water bodies; single-track multibeam down canals	Variable (annual to decadal)	Expert Knowledge	Expert Knowledge
	Land Area	CPRA: 53 CRMS	3-5 years	None	N/A	Expert Knowledge	None
	Surface Elevation	CPRA: 53 CRMS	Semiannually	None	N/A	Expert Knowledge	None

Table 17. Recommended sample sizes for the Teche-Vermilion Basin natural system monitoring plan within the coastal boundary (see Figure 37).

MONITORING	VARIABLE	EXISTING MONITORING II	ING MONITORING IN TECHE-VERMILION BASIN NEW SITES FOR TE		HE-VERMILION BASIN	SAMPLE SIZE METHOD	SITE SELECTION METHOD
CATEGORY		NUMBER OF SITES	SAMPLING FREQUENCY	NUMBER OF ADDITIONAL SITES	SAMPLING FREQUENCY	SAMPLE SIZE MEINOD	SHE SELECTION METHOD
Weather and Climate	Potential Evapo-transpiration	Calculated, not measured directly.					
	Precipitation	Gridded datasets from NOAA	Sub-hourly	1	Sub-hourly	Expert knowledge	Utilize existing platforms
	Wind	3 site plus gridded datasets from NOAA	Sub-hourly	1	Sub-hourly	Expert knowledge	Utilize existing platforms
Biotic Integrity	Nekton Community Composition	13 gillnets, 10 trawls (16'), 13 seine sites	Variable: weekly to monthly	2 gillnets, 2 seine sites	Monthly	Power Analysis; Verified with LDWF	GRTS; Verified with LDWF
	Oyster biomass	7 square meter and 6 dredge sites	Monthly combined square meter and dredge	None	N/A	Expert knowledge	Should conduct periodic oyster mapping at sites
	Soil condition	CPRA: 43 herbaceous wetlands, 3 forested	Once every ten years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation biomass	CPRA: 20	Once every five years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation community composition	CPRA: 43 herbaceous wetlands, 3 forested	Annually	None	N/A	Expert knowledge	Utilize existing CRMS sites
Water Quality	Chlorophyll a	3 Stauffer (ULL), 7 Bayou Vermilion	Stauffer (ULL): Monthly	7	Monthly	Power Analysis	GRTS
		Preservation Association		2 on existing platforms	Sub-hourly	Expert Knowledge	
	Dissolved oxygen LDEQ: 12 LDWF: 13		LDEQ: Monthly, every four years	7	Monthly Power Analysis	GRTS	
		LDWF: 13	LDWF: variable	2 on existing platforms	Sub-hourly	Expert Knowledge	
	Nutrient constituents	LDEQ: 12 LDWF: 13	LDEQ: Monthly, every four years LDWF: variable	7	Monthly	Power Analysis	GRTS
	Salinity	USGS: 2 CPRA: 40 LDEQ: 12 LDWF: 13	USGS and CPRA: Hourly LDEQ: Monthly, every four years LDWF: variable	7 discrete sampling locations	Monthly	Power Analysis	GRTS
	Turbidity LDEQ: 12	LDEQ: Monthly, every four years	7	Monthly	Power Analysis	GRTS	
		LDWF: 13	LDWF: variable	2 on existing platforms	Sub-hourly	Expert Knowledge	
	Total Suspended Solids	LDEQ: 12 LDWF: 13	LDEQ: Monthly, every four years LDWF: variable	7	Monthly	Power Analysis	GRTS
Hydrology	Current Velocity	WAVCIS: 1 GCOOS (planned): 1	Hourly	4 new sites	Hourly	Expert Knowledge	Expert Knowledge
	Water level	CRMS: 21 USGS: 2 NDBC: 1	Hourly	4 new sites	Hourly	Expert Knowledge	Expert Knowledge
	Waves	WAVCIS: 1	Hourly	2 new sites	Hourly	Expert Knowledge	Expert Knowledge
Physical Terrain	Bathymetry	CPRA: Barrier islands (BICM)	BICM every 5-10 years	Tidal inlets; regularly spaced transects in open water bodies; single-track multibeam down canals	Variable (annual to decadal)	Expert Knowledge	Expert Knowledge
	Land Area	CPRA: 40 CRMS	3-5 years	None	N/A	Expert Knowledge	None
	Surface Elevation	CPRA: 40 CRMS	Semiannually	None	N/A	Expert Knowledge	None

Table 18. Recommended sample sizes for the Atchafalaya Basin natural system monitoring plan within the coastal boundary (see Figure 38).

MONITORING CATEGORY	VARIABLE	EXISTING MONITORING	IN ATCHAFALAYA BASIN	NEW SITES FOR A	TCHAFALAYA BASIN	SAMPLE SIZE METHOD	SITE SELECTION METHOD
	VARIABLE	NUMBER OF SITES	SAMPLING FREQUENCY	NUMBER OF ADDITIONAL SITES	SAMPLING FREQUENCY	SAMPLE SIZE MEIHOD	SITE SELECTION METHOD
Weather and Climate	Potential Evapo-transpiration	Calculated, not measured directly.					
	Precipitation	Gridded datasets from NOAA	Sub-hourly	1	Sub-hourly	Expert knowledge	Utilize existing platforms
	Wind	2 site plus gridded datasets from NOAA	Sub-hourly	1	Sub-hourly	Expert knowledge	Utilize existing platforms
Biotic Integrity	Nekton Community Composition	None	N/A	None	N/A	Expert knowledge	Utilize existing LDWF sites
	Oyster biomass	3 oyster dredge, 3 oyster square meter	Monthly combined square meter and dredge	None	N/A	Expert knowledge	Utilize existing LDWF sites
	Soil condition	CPRA: 11 herbaceous wetlands, 10 forested	Once every ten years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation biomass	CPRA: 10	Once every five years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation community composition	CPRA: 11 herbaceous wetlands, 10 forested	Annually	None	N/A	Expert knowledge	Utilize existing CRMS sites
Vater Quality	Chlorophyll a	1 Stauffer (ULL)	Monthly	4	Monthly	Power Analysis	GRTS
				1 on existing platform	Sub-hourly	Expert Knowledge	
	Dissolved oxygen LDEQ: 4 LDWF: 2		LDEQ: Monthly, every four years LDWF: variable	4	Monthly	Power Analysis	GRTS
		LDWF: 2		1 on existing platform	Sub-hourly	Expert Knowledge	
	Nutrient constituents	LDEQ: 4 LDWF: 2	LDEQ: Monthly, every four years LDWF: variable	4	Monthly	Power Analysis	GRTS
	Salinity	CPRA: 21 LDEQ: 4 LDWF: 2	CPRA: Hourly LDEQ: Monthly, every four years LDWF: variable	4 discrete sampling locations	Monthly	Power Analysis	GRTS
	Turbidity	LDEQ: 4	LDEQ: Monthly, every four years	4	Monthly	Power Analysis	GRTS
		LDWF: 2	LDWF: variable	1 on existing platform	Sub-hourly	Expert Knowledge	
	Total Suspended Solids	LDEQ: 4 LDWF: 2	LDEQ: Monthly, every four years LDWF: variable	4	Monthly	Power Analysis	GRTS
lydrology	Current Velocity	None	N/A	1 new site, 1 add to existing platform	Hourly	Expert Knowledge	Expert Knowledge
	Water level	CRMS: 22 NDBC: 2	Hourly	1 new site	Hourly	Expert Knowledge	Expert Knowledge
	Waves	None	N/A	1 new site, 1 add to existing platform	Hourly	Expert Knowledge	Expert Knowledge
Physical Terrain	Bathymetry	CPRA: Barrier islands (BICM)	BICM every 5-10 years	Tidal inlets; regularly spaced transects in open water bodies; single-track multibeam down canals	Variable (annual to decadal)	Expert Knowledge	Expert Knowledge
	Land Area	CPRA: 20 CRMS	3-5 years	None	N/A	Expert Knowledge	None
	Surface Elevation	CPRA: 20 CRMS	Semiannually	None	N/A	Expert Knowledge	None

Table 19. Recommended sample sizes for the Terrebonne Basin natural system monitoring plan within the coastal boundary (see Figure 39).

MONITORING	VARIABLE	EXISTING MONITORING IN TERREBONNE BASIN		NEW SITES FOR TERREBONNE BASIN			
CATEGORY		NUMBER OF SITES	SAMPLING FREQUENCY	NUMBER OF ADDITIONAL SITES	SAMPLING FREQUENCY	SAMPLE SIZE METHOD	SITE SELECTION METHOD
Weather and Climate	Potential Evapo-transpiration	Calculated, not measured directly.					
	Precipitation	1 USGS sites, 3 NOAA sites, and gridded datasets from NOAA	Sub hourly	2	Sub hourly	Expert knowledge	Utilize existing platforms
	Wind	4 LUMCON sites, 4 USGS sites, 1 FAA site and gridded datasets from NOAA	Sub hourly	2	Sub hourly	Expert knowledge	Utilize existing platforms
Biotic Integrity	Nekton Community Composition	24 gillnets, 18 16' trawls, 24 seine sites	Variable; weekly to monthly	None	N/A	Expert knowledge	Utilize existing LDWF sites
	Oyster biomass	19 square meter and 13 dredge sites	Monthly combined square meter and dredge	None	N/A	Expert knowledge	Utilize existing LDWF sites
	Soil condition	CPRA: 6 herbaceous wetlands, 69 forested	Once every ten years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation biomass	CPRA: 31	Once every five years	None	N/A	Expert knowledge	Utilize existing CRMS sites
	Wetland vegetation community composition	CPRA: 6 herbaceous wetlands, 69 forested	Annually	None	N/A	Expert knowledge	Utilize existing CRMS sites
Water Quality	Chlorophyll a	None	N/A	15	Monthly	Power Analysis	GRTS
				7 on existing platforms	Sub-hourly	Expert Knowledge	
	Dissolved oxygen	LDEQ: 49	LDEQ: Monthly, every four years	15	Monthly	Power Analysis	GRTS
		LDWF: 20	LDWF: variable	7 on existing platforms	Sub-hourly	Expert Knowledge	
	Nutrient constituents	LDEQ: 49 LDWF: 20	LDEQ: Monthly, every four years LDWF: variable	15	Monthly	Power Analysis	GRTS
	Salinity	CPRA: 76 USGS: 7 LUMCON: 3 LDEQ: 49 LDWF: 20	CPRA and USGS: Hourly LUMCON: Sub-hourly LDEQ: Monthly, every four years LDWF: variable	15 discrete sampling locations	Monthly	Power Analysis	GRTS
	Turbidity LDEQ: 49 LDWF: 20		LDEQ: Monthly, every four years LDWF: variable	15	Monthly	Power Analysis	GRTS
		LDWF: 20		7 on existing platforms	Sub-hourly	Expert Knowledge	
	Total Suspended Solids	LDEQ: 49 LDWF: 20	LDEQ: Monthly, every four years LDWF: variable	15	Monthly	Power Analysis	GRTS
Hydrology	Current Velocity	GCOOS (planned): 1 WAVCIS: 1 USGS: 4	Hourly	6 new sites, 2 add to existing platform	Hourly	Expert Knowledge	Expert Knowledge
	Water level	CRMS: 83 USGS: 5 LUMCON: 4	Hourly	6 new sites	Hourly	Expert Knowledge	Expert Knowledge
	Waves	WAVCIS: 1	Hourly	2 new sites, 2 add to existing platform	Hourly	Expert Knowledge	Expert Knowledge
Physical Terrain	Bathymetry	CPRA: Barrier islands (BICM)	BICM every 5-10 years	Tidal inlets; regularly spaced transects in open water bodies; single-track multibeam down canals	Variable (annual to decadal)	Expert Knowledge	Expert Knowledge
	Land Area	CPRA: 82 CRMS	3-5 years	None	N/A	Expert Knowledge	None
	Surface Elevation	CPRA: 82 CRMS	Semiannually	None	N/A	Expert Knowledge	None

Table 20. Recommended sample sizes for the Barataria Basin natural system monitoring plan.

MONITORING	VARIABLE	EXISTING MONITORING IN BARATARIA BASIN		NEW SITES FOR BARATARIA BASIN		CAMPIE CITE METHOD	CITE CELECTION METHOD
CATEGORY		NUMBER OF SITES	SAMPLING FREQUENCY	NUMBER OF ADDITIONAL SITES	SAMPLING FREQUENCY	SAMPLE SIZE METHOD	SITE SELECTION METHOD
Weather and Climate	Potential Evapo-transpiration	Calculated, not measured directly.					
	Precipitation	16 sites plus gridded datasets from NOAA	Sub-hourly	3	Sub-hourly	Expert Knowledge	Utilize existing platforms
	Wind	14 sites plus gridded datasets from NOAA	Sub-hourly	3	Sub-hourly	Expert Knowledge	Utilize existing platforms
Biotic Integrity	Nekton Community Composition	25 gillnet, 15 trawl, 20 seine sites; 16 electrofishing	Variable: Weekly to quarterly	10 16-foot trawls; supplement 50-foot seines with drop samplers	Monthly	Power Analysis	GRTS
	Oyster biomass	7 square meter	Annually	15	Semi-annually to Quarterly	Expert knowledge	Should conduct oyster mapping prior to site selection
	Soil condition	CRMS: 11 forested wetlands and 54 herbaceous wetlands	Once every ten years	None	N/A	Power Analysis on herbaceous wetlands only	Utilize CRMS sites
	Wetland vegetation biomass	CPRA: 7 CRMS	Once	14 plus revisit 7 existing sites	Once every five years	Power Analysis on herbaceous wetlands only	Utilize CRMS sites
	Wetland vegetation community composition	CRMS: 11 forested wetlands and 54 herbaceous wetlands	Annually	None	Annually	Power Analysis	Utilize existing CRMS sites
Water Quality	Chlorophyll a	No existing sites	N/A	22	Monthly	Power Analysis	GRTS
				6 on existing platforms	Sub-hourly	Expert knowledge	
	Dissolved oxygen LDEQ: 8 within larger open water box LDWF: 60 within the mid- to lower base	LDEQ: 8 within larger open water bodies	LDEQ: Monthly, every four years LDWF: Variable	22	Monthly	Power Analysis	GRTS
		LDWF: 60 within the mid- to lower basin		6 on existing platforms	Sub-hourly	Expert knowledge	
	Nutrient constituents	LDEQ: 8 within larger open water bodies	Monthly, every four years	22	Monthly	Power Analysis	GRTS
	Salinity	USGS: 10 CPRA: 65	Hourly	6 on existing platforms	Hourly	Power Analysis	GRTS
	Turbidity	LDEQ: 8 within larger open water bodies LDWF: 60 within the mid- to lower basin	LDEQ: Monthly, every four years LDWF: Variable	22	Monthly	Power Analysis	GRTS
				6 on existing platforms	Sub-hourly	Expert knowledge	
	Total Suspended Solids	LDEQ: 8 within larger open water bodies LDWF: 60 within the mid- to lower basin	LDEQ: Monthly, every four years LDWF: Variable	22	Monthly	Power Analysis	GRTS
Hydrology	Current Velocity	No existing sites	N/A	4	Hourly	Expert Knowledge	Expert knowledge
	Water level	USGS: 10 CPRA: 65	Hourly	6 on existing platforms	Hourly	Power Analysis	GRTS; Expert knowledge
	Waves	WAVCIS: 1 Oil Platform: 1	Hourly	2	Hourly	Expert Knowledge	Utilize existing USGS platforms
Physical Terrain	Bathymetry	CPRA: Barrier islands (BICM)	BICM every 5-10 years	Tidal inlets; regularly spaced transects in open water bodies; single-track multibeam down canals	Variable (annual to decadal)	Expert Knowledge	Expert knowledge
	Land Area	CRMS Coastwide	3-5 years	None	N/A	Expert knowledge	None
	Surface Elevation	CPRA: 65 SETs NOAA: 2 CORS (in planning phase)	Semi-annually	None	N/A	Expert knowledge	None

Table 21. Recommended sample sizes for the Pontchartrain Region natural system monitoring plan.

See Appendix II for change detecting information on an individual variable basis and justification for the sample sizes provided.

MONITORING CATEGORY	VARIABLE	EXISTING MONITORIN	G IN BARATARIA BASIN	NEW SITES FOR BARATARIA BASIN		CAMPIE CITE METHOD	
		NUMBER OF SITES	SAMPLING FREQUENCY	NUMBER OF ADDITIONAL SITES	SAMPLING FREQUENCY	SAMPLE SIZE METHOD	SITE SELECTION METHOD
Weather and Climate	Potential Evapo-transpiration	Calculated, not measured directly.					
	Precipitation	49 sites plus gridded datasets from NOAA	Sub-hourly	2	Sub-hourly	Expert Knowledge	Utilize existing platforms
	Wind	20 sites plus gridded datasets from NOAA	Sub-hourly	2	Sub-hourly	Expert Knowledge	Utilize existing platforms
Biotic Integrity	Nekton Community Composition	31 gillnet, 31 trawl, 29 seine sites; 27 electrofishing	Variable: Weekly to quarterly	None	Monthly	Power Analysis	N/A
	Oyster biomass	44 square meter	Annually	None	Increase to semi-annually to quarterly	Expert knowledge	Should conduct oyster mapping prior to site selection
	Soil condition	CRMS: 27 forested wetlands and 62 herbaceous wetlands	Once every ten years	None	N/A	Power Analysis on herbaceous wetlands only	Utilize CRMS sites
	Wetland vegetation biomass	CPRA: 8 CRMS	Once	13 plus revisit 8 existing sites	Once every five years	Power Analysis on herbaceous wetlands only	Utilize CRMS sites
	Wetland vegetation community composition	CRMS: 27 forested wetlands and 62 herbaceous wetlands	Annually	None	Annually	Power Analysis	Utilize existing CRMS sites
Water Quality	Chlorophyll a	No existing sites	N/A	27 (plus additional 13 for pilot study)	Monthly	Power Analysis	GRTS
				8 on existing platforms	Sub-hourly	Expert knowledge	
	Dissolved oxygen	LDEQ: 62	LDEQ: Monthly, every four years LDWF: Variable	27 (plus additional 13 for pilot study)	Monthly	Power Analysis	GRTS
				8 on existing platforms	Sub-hourly	Expert knowledge	
	Nutrient constituents	LDEQ: 62	Monthly, every four years	27 (plus additional 13 for pilot study)	Monthly	Power Analysis	GRTS
	Salinity	USGS: 62 CPRA: 89	Hourly	None	N/A	Power Analysis	GRTS
	Turbidity	LDEQ: 62	LDEQ: Monthly, every four years LDWF: Variable	27 (plus additional 13 for pilot study)	Monthly	Power Analysis	GRTS
				8 on existing platforms	Sub-hourly	Expert knowledge	
	Total Suspended Solids	LDEQ: 62	LDEQ: Monthly, every four years LDWF: Variable	27 (plus additional 13 for pilot study)	Monthly	Power Analysis	GRTS
Hydrology	Current Velocity	No existing sites	N/A	None	Hourly	Expert Knowledge	Expert knowledge
	Water level	USGS: 62 CPRA: 89	Hourly	8 on existing platforms	Hourly	Power Analysis	GRTS; Expert knowledge
	Waves	NDBC: 1	Hourly	5	Hourly	Expert Knowledge	Utilize existing USGS platforms
Physical Terrain	Bathymetry	CPRA: Barrier islands (BICM)	BICM every 5-10 years	Regularly spaced transects in open water bodies; single-track multibeam down canals	Decadal	Expert Knowledge	Expert knowledge
	Land Area	CRMS coast wide	3-5 years	None	N/A	Expert knowledge	None
	Surface Elevation	CPRA: 89 SETs	Semi-annually	None	N/A	Expert knowledge	None

HUMAN SYSTEMS MONITORING PLAN

The human system monitoring plans use social indicators and monitoring variables combined with targeted primary data collection to address the socioeconomic objectives of SWAMP. The variables and objectives related to the monitoring of socioeconomic change in coastal Louisiana were grouped into the following categories: population and demographics, housing and community characteristics, economy and employment, ecosystem dependency, protection of residential properties, and protection of critical infrastructure and essential services. A summary of monitoring variables, data sources, and sampling information is provided in Table 22. Detecting change using secondary data requires a two-part approach: the derivation of functional community boundaries, and the statistical analysis of social and economic change within these boundaries. Census block group data were aggregated into larger and more socially meaningful units to develop a number of functional community areas. All human system monitoring variables can then be summarized within these functional communities.

GEOGRAPHIC COMMUNITIES

Geographic communities are established population centers identified by the U.S. Census Bureau. Within each geographic community, the plan recommends monitoring changes in all variables identified in the population and demographics, housing and community characteristics, and economic and employment monitoring categories as identified in Table 22. To effectively monitor change in these population centers, the plan recommends using administrative boundaries extended using existing road networks to create a 10-minute drive time buffer around the population-weighted center of the community. To derive drive time buffers within the city of New Orleans (within the Pontchartrain region), neighborhood centroids were used for this analysis. All census block groups with their population-weighted centroid within the derived community boundary were aggregated to create the functional geographic communities.

CALCASIEU-SABINE BASIN

Thirteen communities and census designated places were used to derive the community boundaries included in the Calcasieu-Sabine monitoring plan (Figure 56). The largest and most populous of these communities is Lake Charles. There is an urban cluster surrounding Lake Charles including the cities of Sulphur and Westlake and the census designated places of Carlyss, Moss Bluff, and Prien. The proximity of these communities to each other leads to significant overlap of road service areas. More isolated communities include the town of Iowa and the village

of Fenton to the east, the census designated place of Gillis to the north, the town of Vinton and census designated place of Starks to the west, and the census designated places of Hackberry and Cameron to the south. Road network analysis radiates from the geographic center of each of these communities. However, Calcasieu Lake, Black Lake, and the Sabine National Wildlife Refuge in the southern part of the basin present significant physical barriers to human settlement. These physical constraints to road connectivity in remote places like Hackberry and Cameron lead to more linear drive time buffers when compared to the more radially symmetric urban area buffers.

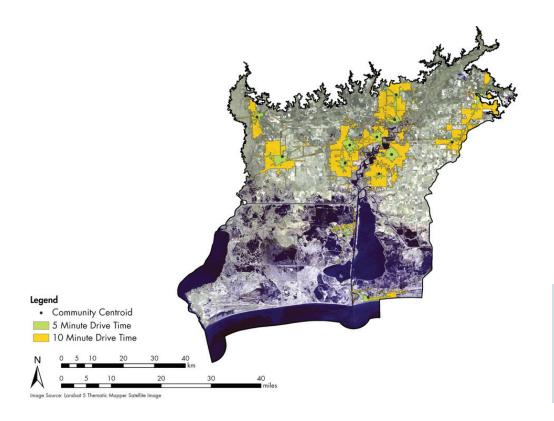


Figure 56. Calcasieu-Sabine 5- and 10-minute drive time.

Site locations for populationbased geographical functional communities in Calcasieu-Sabine Basin based upon driving time from the population weighted centroid of the community.

MERMENTAU BASIN

Sixteen communities and census designated places were used to derive the community boundaries included in the Mermentau monitoring plan (Figure 57). The Mermentau Basin includes the cities of Crowley, Rayne, Kaplan, and Jennings, the towns of Iota, Duson, Gueydan, Lake Arthur, and Welsh, the villages of Estherwood, Morse, and Mermentau, and the census designated places of Egan, Hayes, Lacassine, and Roanoke. These communities are evenly spread out across the basin. Overlap

between community areas is rare, though most communities are within a fifteen to twenty-minute drive-time to the next closest community. I-10, U.S. 90, and several state highways connect the communities without significant physical constraints. Because of this, drive-time buffers have more radial symmetry than those seen in parts of the Calcasieu-Sabine monitoring plan. The Mermentau River cuts through the Mermentau Basin and Lake Arthur, eventually emptying into the Gulf of Mexico. Unincorporated communities south of Grand Lake and White Lake were not included within the Mermentau monitoring plan.

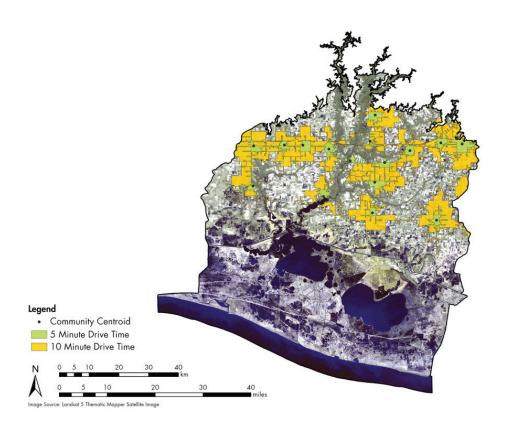


Figure 57. Mermentau Basin 5- and 10-minute drive time.

Site locations for populationbased geographical functional communities in Mermentau Basin based upon driving time from the population weighted centroid of the community.

TECHE-VERMILION BASIN

Twenty-nine communities and census designated places were used to derive the community boundaries included in the Teche-Vermilion monitoring plan (Figure 58). Many cities and towns surround the primary community of Lafayette. The cities of Broussard, Scott, and Youngsville, the village of Maurice, and the census designated places of Milton and Cade are contiguous with Lafayette. Approaching the Atchafalaya Basin to the east of Lafayette are the cities of Breaux Bridge and St. Martinville, the town of Henderson, the village of Parks, and the census designated places of Cecilia, Catahoula, and Loreauville. To the

north are the towns of Arnaudville, Port Barre, and Leonville as well as the village of Palmetto. South of Lafayette are the cities of New Iberia, Abbeville, Jeanerette, and Franklin, the towns of Delcambre, Baldwin, and Erath, and the census designated places of Lydia, Glencoe, Charenton, and Sorrel. Communities in Teche-Vermilion Basin are relatively dense in the Lafayette area, but are more distant in the remote areas to the north and east near the Atchafalaya Basin. U.S. 90 connects Lafayette with many cities and towns to the south. Communities to the north and south are nearly all adjacent to Bayou Teche. The Vermilion River cuts through the census designated place of Milton and the city of Abbeville southeast from Lafayette.

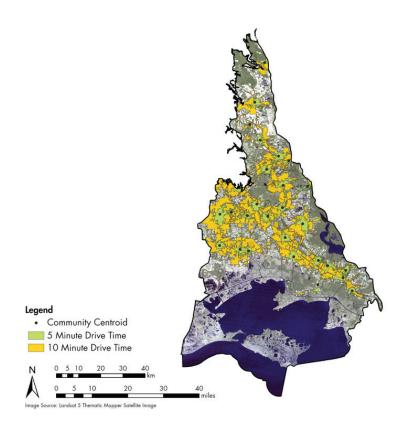


Figure 58. Teche-Vermilion 5- and 10-minute drive time.

Site locations for populationbased geographical functional communities in Teche-Vermilion Basin based upon driving time from the population weighted centroid of the community.

ATCHAFALAYA BASIN

Much of the land area in the Atchafalaya basin is unoccupied. It is the least populated basin in the study area, with only five communities and census designated places used to derive the community boundaries included in the Atchafalaya monitoring plan (Figure 59). Most of the communities are in the vicinity of Morgan City, located in the Terrebonne Basin. The Atchafalaya River separates Morgan City from the town of Berwick. Along with Berwick, the city of Patterson and the census designated place of Bayou Vista reside in the Atchafalaya Basin area, following the Lower Atchafalaya River and U.S. 90. The only other communities in the Atchafalaya monitoring plan are the

towns of Krotz Springs and Melville. Both towns are deeply isolated from other communities. They both follow the Atchafalaya River and are located much farther north than Berwick and Morgan City. Krotz Springs is at the intersection of the Atchafalaya River and U.S. 190. Melville is on LA 10, which runs from Morganza in the east to Palmetto in the west. Additionally, the unincorporated community of Bayou Sorrel is considered later in this report. There are areas of overlap with the five-minute drive time between Patterson-Bayou Vista-Berwick and also to Morgan City in Terrebonne Basin. Palmetto's drive-time buffer in Teche-Vermilion basin is visible near Melville in the northern part of Figure 59. Otherwise, the Atchafalaya communities are very isolated with little road network connectivity.

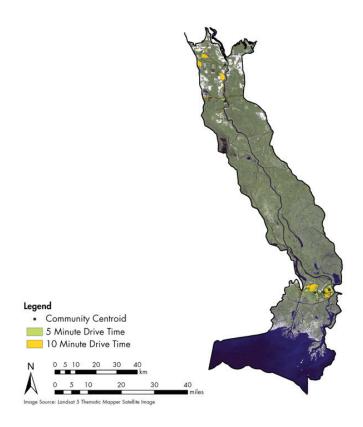


Figure 59. Atchafalaya Basin 5- and 10-minute drive time.

Site locations for populationbased geographical functional communities in Atchafalaya Basin based upon driving time from the population weighted centroid of the community.

TERREBONNE BASIN

Forty-six communities and census designated places were used to derive the community boundaries included in the Terrebonne monitoring plan (Figure 60). The Terrebonne Basin is a large area that spans from New Roads in Pointe Coupee Parish all the way to the Gulf coast. Within this area are the cities of Houma, Morgan City, Port Allen, Thibodaux, Plaquemine, New Roads, the towns of Brusly, Addis, Golden Meadow, Lockport, White Castle, Maringouin, Livonia, and Fordoche, the villages of Napoleonville, Rosedale, and Grosse Tete, and twenty-seven additional census designated places. The major population areas are mostly located along LA 1, which follows the western bank

of the Mississippi River across from Baton Rouge and then south along Bayou Lafourche. Houma is the largest city in the Terrebonne monitoring area, with a cluster of towns and census designated places in close proximity. Houma resides along Terrebonne Bayou as it flows south from Thibodaux. Bayou Black connects Houma in the east to Morgan City in the west. Road network buffers are very linear in the Terrebonne basin as communities closely follow bayous and highways that generally move north to south. There are a few towns and census designated places on the eastern edge of the basin, just outside the boundary of the Atchafalaya Basin, including Pierre Part, Grosse Tete, and Morganza. Additionally, there are large, mostly unoccupied areas in the central part of the basin.

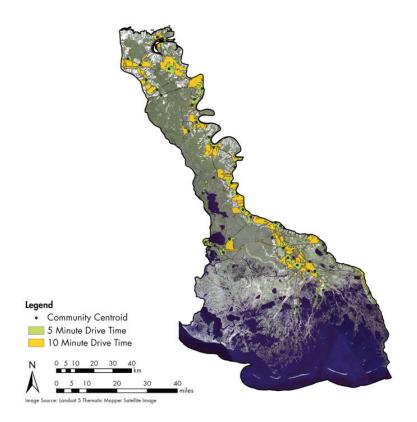


Figure 60. Terrebonne Basin 5- and 10-minute drive time.

Site locations for populationbased geographical functional communities in Terrebonne Basin based upon driving time from the population weighted centroid of the community.

BARATARIA BASIN

Fifty-four communities and census designated places were used to derive the community boundaries included in the Barataria monitoring plan (Figure 61). This includes nine neighborhood statistical area boundaries within the Algiers neighborhood of New Orleans. In addition to Algiers, this study area includes the densely populated west bank of the Mississippi River in Jefferson and Plaquemines parishes. This study area also includes smaller communities located farther down the Mississippi River in

Plaquemines Parish and along U.S. Highway 90, which bisects the northern portion of the study area. Along Bayou Lafourche, the western boundary of Barataria Basin, most of the population centers are located on the west bank of the bayou, within the Terrebonne Basin. Because this analysis utilized road networks and includes streets that cross the bayou, many of the community boundaries extend from Terrebonne Basin into Barataria Basin. The portions of these communities located within Barataria Basin should be included in any analysis of the basin.

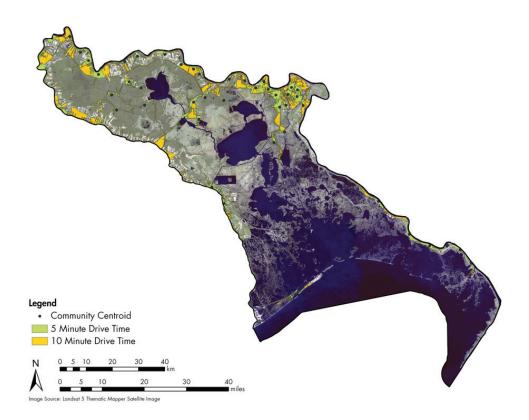


Figure 61. Barataria Basin 5- and 10-minute drive time.

Map of site locations for population-based geographical functional communities in Barataria Basin based upon driving time from the population weighted centroid of the community.

PONTCHARTRAIN REGION

One hundred and fifteen communities and census designated places were used to derive the community boundaries included in the Pontchartrain monitoring plan (Figure 62). This includes 63 neighborhood statistical area boundaries within the city of New Orleans. Beyond New Orleans, the Pontchartrain Region includes the suburban communities on the south shore of Lake Pontchartrain in Jefferson and St. Bernard parishes. Other

communities tend to cluster along the interstate highways that traverse both the north and south shores of Lake Pontchartrain, including the communities of Slidell and Mandeville along the Interstate 12 corridor and the major population centers that extent north and west of New Orleans to Baton Rouge, along the Interstate 10 corridor, including Metairie, Kenner, and LaPlace. With the exception of the small community of Pointe a la Hache, there were no census designated places located on the east bank of the Mississippi River in Plaquemines Parish.

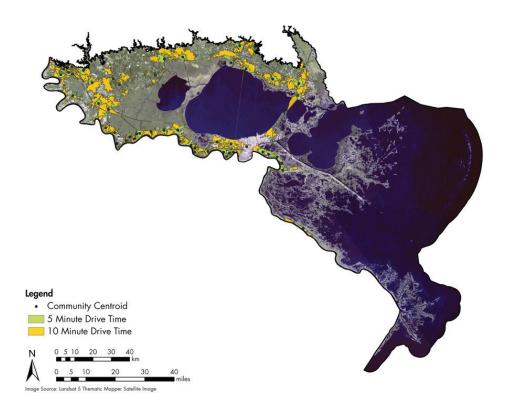


Figure 62. Pontchartrain Region 5- and 10-minute drive time.

Map of site locations for population-based geographical functional communities in the Pontchartrain Region based upon driving time from the population weighted centroid of the community.

Table 22. Recommended data sources and sampling design for the human system monitoring plan.

See the human system sampling design for information on deriving the functional community types identified under the site selection method.

MONITORING CATEGORY	VARIABLE	DATA TYPE	DATA SOURCE	SAMPLING FREQUENCY	SITE SELECTION METHOD
Population and	Number of Households	Secondary	5-year ACS block group estimates of Household Type (Including Living Alone) ¹	5-year within communities	Geographic Communities
Demographics				Annual between communities	Occupational Communities
	Total Population	Secondary	5-year ACS block group estimates of Total Population ¹	5-year within communities	Geographic Communities
				Annual between communities	Occupational Communities
	Race and Ethnicity	Secondary	5-year ACS block group estimates of Race and Hispanic or Latino Origin1	5-year within communities	Geographic Communities
				Annual between communities	Occupational Communities
Housing and Community Characteristics	Residential Stability	Secondary	5-year ACS block group estimates of geographical mobility in the past year for current residence	5-year within communities	Geographic Communities
				Annual between communities	Occupational Communities
	Home Ownership	Secondary	5-year ACS block group estimates of tenure of occupied housing units ¹	5-year within communities	Geographic Communities
				Annual between communities	Occupational Communities
	Residential Occupancy Rates	Secondary	5-year ACS block group estimates of occupancy status of housing units ¹	5-year within communities	Geographic Communities
				Annual between communities	Occupational Communities
	Property Values	Secondary	5-year ACS block group estimates of median gross rent and median value of owner-occupied housing units1	5-year within communities	Geographic Communities
				Annual between communities	Occupational Communities
conomy and	Economic Development	Secondary	FEMA Hazus-MH block level Building Count by Occupancy² data	5-year within communities	Geographic Communities
mployment				Annual between communities	Occupational Communities
	Income Levels	Secondary	5-year ACS block group estimates of Median Household Income in the Past 12 Months	5-year within communities	Geographic Communities
			5-year ACS block group estimates of Per Capita Income in the Past 12 Months ¹	Annual between communities	Occupational Communities
	Poverty Rates	Secondary	5-year ACS block group estimates of Poverty Status in the Past 12 Months for Unrelated Individuals	5-year within communities	Geographic Communities
			5-year ACS block group estimates of Poverty Status in the Past 12 Months for Families ¹	Annual between communities	Occupational Communities
	Unemployment Levels	Secondary	5-year ACS block group estimates of Employment Status for the Population 16 Years and Over ¹	5-year within communities	Geographic Communities
				Annual between communities	Occupational Communities
			Louisiana Workforce Commission Unemployment Insurance Claims	Annual	Parish
Ecosystem Dependency	Natural Resource Extraction	Secondary	USDA Census of Agriculture ZIP code agricultural yield data	5 Year	Natural Resource Extraction Sites
			LSU AgCenter parish agricultural totals	Annual	
			LDWF trip ticket zone fisheries landings data		
			LDNR oil and gas production data		
	Cultural and Traditional Uses of Natural Resources	Primary	Multistage or clustered random sampling survey methods (~4000 surveys needed)	5 Year	Occupational Communities
	Natural Resource-Based Employment	Secondary	5-year ACS block group estimates of employment in agriculture, forestry, fishing and hunting, and oil and gas extraction	5-year within communities	Occupational Communities
				Annual between communities	
	Tourism and Recreational Use of Natural Resources	Primary	Multistage or clustered random sampling survey methods (~4000 surveys needed)	5 Year	Occupational Communities
Residential Properties Protection	Residential Risk Reduction	Secondary	5-year ACS block group estimates of Household Type (Including Living Alone) ¹	5-year within communities.	Physical Risk and Vulnerable Communities
			FEMA digital flood maps	Annual between communities	
	Households Receiving Structural Protection	Secondary	5-year ACS estimates of Household Type (Including Living Alone)	5-year within communities	Physical Risk and Vulnerable Communities
			USACE levee locations data	Annual between communities	
	Residential Properties Receiving Nonstructural Protection	Secondary	GOHSEP mitigated structures data	5 Year	Physical Risk and Vulnerable Communities

MONITORING CATEGORY	VARIABLE	DATA TYPE	DATA SOURCE	SAMPLING FREQUENCY	SITE SELECTION METHOD
Critical Infrastructure and Essential Services	Risk Reduction for Critical Facilities	Secondary	FEMA Hazus-MH block level Essential Facilities, Lifeline Utility Systems and Transportation Systems ² data	5 Year	Physical Risk and Vulnerable Communities
Protection			GOHSEP Severe Repetitive Loss Data		
	Miles of Levees Created and Maintained	Secondary	USACE levee locations data	Annual	Physical Risk and Vulnerable Communities
	USACE Levee Safety Action Classification Data				
	Number of Critical Facilities Protected by Levees	Secondary	FEMA Hazus-MH block level Essential Facilities, Lifeline Utility Systems and Transportation Systems ¹ data	5 Year	Physical Risk and Vulnerable Communities
			USACE Levee Polder data		
	Public and Commercial Properties Receiving Nonstructural Protection	Secondary	GOHSEP mitigated structures data	5 Year	Physical Risk and Vulnerable Communities

Terms used specifically by ACS.
 Terms used specifically in the Federal Emergency Management Agency (FEMA) Hazus-MH database.

OCCUPATIONAL COMMUNITIES

Clusters of census block groups with a high level of renewable natural resource employment were identified using industry data reported by the census, rather than occupational data. Global and local tests for clustering were used to determine the degree of clustering in the study area as well as where any clustering occurs and where statistical outliers are located. These population clusters were used to define the functional occupational communities. Within each occupational community, the plan recommends monitoring changes in all variables identified in the population and demographics, housing and community characteristics, and economy and employment monitoring categories as identified in Table 22.

CALCASIEU-SABINE

Within Calcasieu-Sabine Basin, seven natural resource-dependent block groups constitute the occupational communities, as shown in Figure 63. The majority of these block groups are isolated statistical outliers that are not included in larger statistical block group clusters. This includes census block groups within Cameron and Calcasieu Parishes which encompass the town of Cameron in Cameron Parish and the communities of Lake Charles, Iowa, and Moss Bluff in Calcasieu Parish.

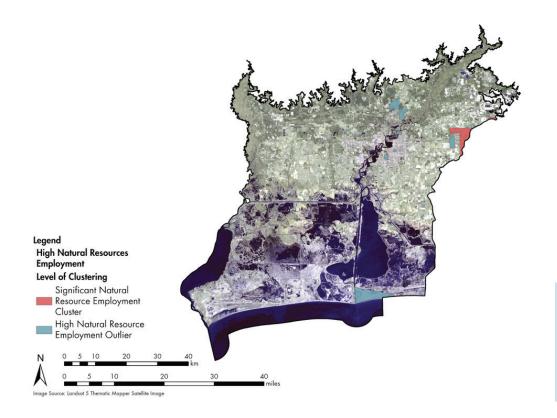


Figure 63. Natural resourcedependent clusters in Calcasieu-Sabine Basin.

Site locations for functional communities in Calcasieu-Sabine Basin based upon clusters of renewable natural resource-dependent census block groups.

MERMENTAU

Within Mermentau Basin, sixteen natural resource-dependent block groups make up the occupational communities, as shown in Figure 64, including census block group clusters in Jefferson Davis, Vermilion, Acadia, and Lafayette Parishes. These clusters encompass the settlements of Welsh, Roanoke, Lake Arthur, and Lacassine in Jefferson Davis Parish, Gueydan in Vermilion Parish, Estherwood, Mermentau, Morse, and Iota in Acadia Parish, as well as Duson in Lafayette Parish.

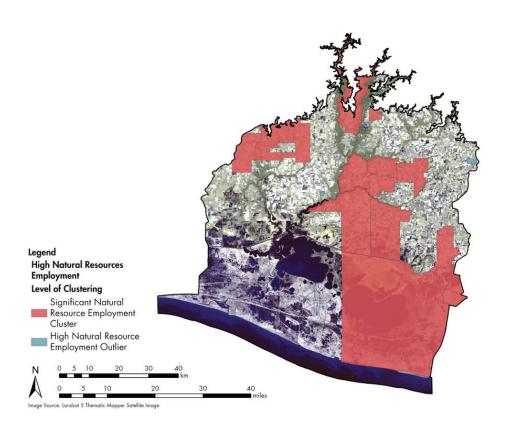


Figure 64. Natural resourcedependent clusters in Mermentau Basin.

Site locations for functional communities in Mermentau Basin based upon clusters of renewable natural resourcedependent census block groups.

TECHE-VERMILION

Within Teche-Vermilion Basin, twenty natural resource-dependent block groups constitute the occupational communities, as shown in Figure 65, including census block group clusters in Lafayette, St. Landry, Iberia, St. Mary, and Vermilion Parishes. This encompasses the population centers of Lafayette and Scott in Lafayette Parish, Palmetto in St. Landry Parish, Avery Island, Lydia, and New Iberia in Iberia Parish, Franklin and Baldwin in St. Mary Parish, and Delcambre, Abbeville, and Erath in Vermilion Parish.

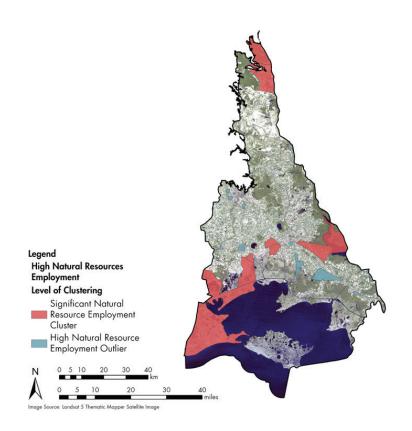


Figure 65. Natural resourcedependent clusters in Teche-Vermilion Basin.

Site locations for functional communities in Teche-Vermilion Basin based upon clusters of renewable natural resource-dependent census block groups.

ATCHAFALAYA BASIN

Within Atchafalaya Basin, three natural resource-dependent block groups constitute the occupational communities, as shown in Figure 66. This includes census block groups in Iberville, St. Landry, and Iberia Parishes. This encompasses the unincorporated communities of Bayou Sorrel in Iberville Parish, Melville in St. Landry Parish, and Bayou Chene in Iberia Parish. Most of these towns are situated on the edges of the Atchafalaya Basin despite the fact that the census block group boundaries extend within the basin.

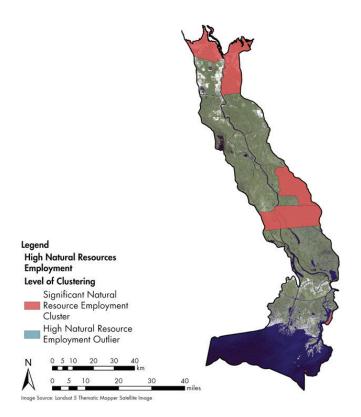


Figure 66. Natural resourcedependent clusters in Atchafalaya Basin.

Site locations for functional communities in Atchafalaya Basin based upon clusters of renewable natural resourcedependent census block groups.

TERREBONNE BASIN

Within Terrebonne Basin, twenty-nine natural resource-dependent block groups make up the occupational communities, as shown in Figure 67, including census block groups in Lafourche, Terrebonne, Assumption, Iberville, West Baton Rouge, and Pointe Coupee Parishes. These occupation clusters include the population centers of Golden Meadow, Larose, Thibodaux, Lafourche Crossing, and Galliano in Lafourche Parish, Gray, Bayou Blue, Bayou Cane, Montegut, Chauvin, Dulac, and Houma in Terrebonne Parish, Belle Rose in Assumption Parish, White Castle, Crescent, Plaquemine, and Grosse Tete in Iberville Parish, and Livonia, Fourdoche, Erwinville, and Ventress in Pointe Coupee Parish.

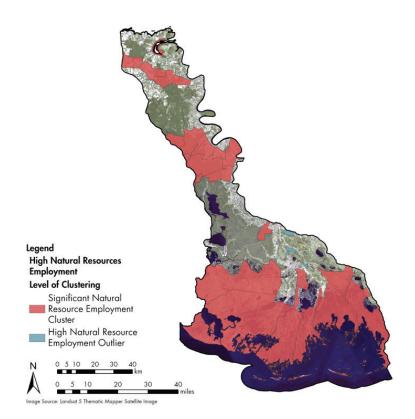


Figure 67. Natural resourcedependent clusters in Terrebonne Basin.

Site locations for functional communities in Terrebonne Basin based upon clusters of renewable natural resourcedependent census block groups.

BARATARIA BASIN

Within Barataria Basin, fifteen natural resource-dependent block groups constitute the occupational communities, as shown in Figure 68. This includes census block groups in both Plaquemines Parish (seven block groups) and Jefferson Parish (five block groups). These block group clusters encompass the communities of Bootheville, Buras, Empire, Triumph, and Venice in Plaquemines Parish and Barataria, Grand Isle, Jean Lafitte, and Lafitte in Jefferson Parish.

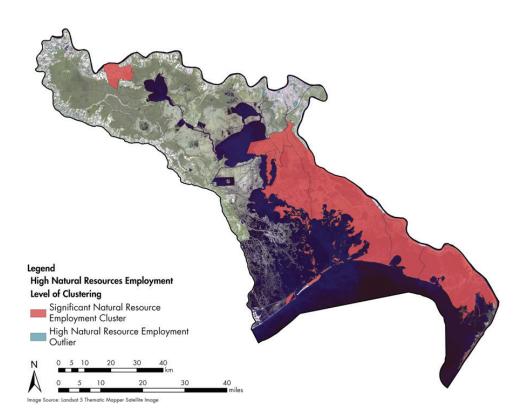


Figure 68. Natural resourcedependent clusters in Terrebonne Basin.

Site locations for functional communities in Terrebonne Basin based upon clusters of renewable natural resourcedependent census block groups.

PONTCHARTRAIN REGION

Within the Pontchartrain Region, there are three significant renewable natural resource-dependent block groups that comprise the occupational community identified in Figure 69. This area is located in St. Bernard Parish and includes the communities of Violet and Poydras and many small unincorporated communities such as Delacroix, Yscloskey, and Reggio. There are three individual census block groups within the city of New Orleans that are outliers in that analysis. These heavily urbanized, individual block groups have relatively high levels of renewable natural resource employment but are not part of any larger cluster of renewable natural resource employment.

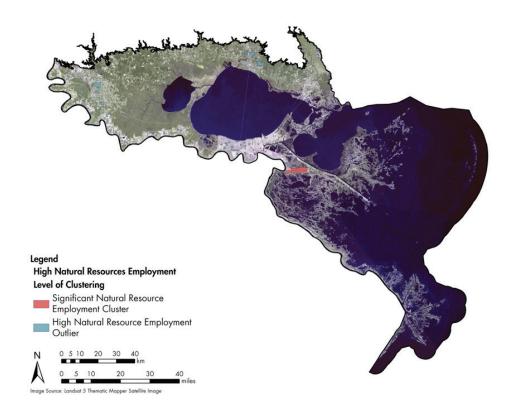
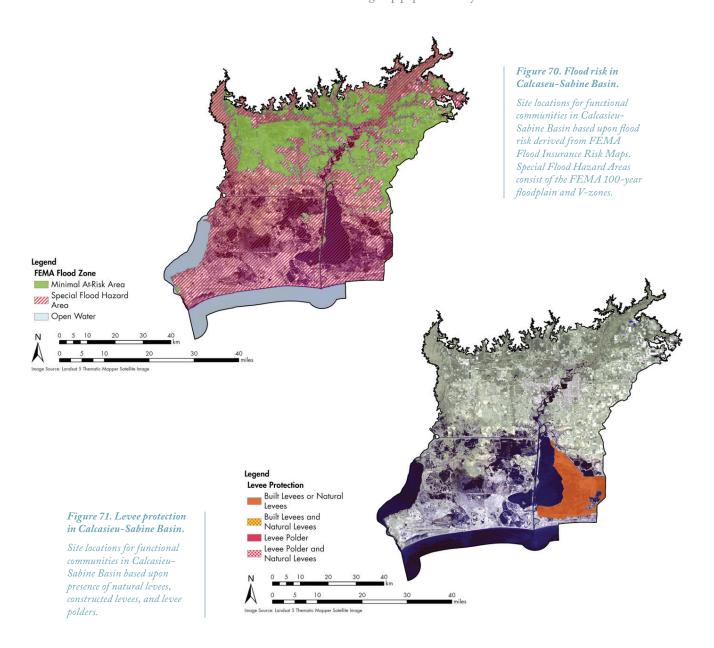


Figure 69. Natural resource clusters in the Pontchartrain Region.


Map of site locations for functional communities in the Pontchartrain Region based upon clusters of renewable natural resource-dependent census block groups.

PHYSICAL RISK AND VULNERABLE COMMUNITIES

FEMA's FIRMs enable the identification of households located within the 100-year floodplain and FEMA V-zones. All census block groups that have their population-weighted centroid within these special flood hazard areas were aggregated to create risk-based functional communities. Similarly, households residing in census block groups located atop natural levees and/or receiving structural protection were aggregated in the same manner, allowing the plan to monitor the proportion of the population requiring and receiving structural protection. Within vulnerable communities, the plan recommends monitoring changes in those variables included as part of the residential properties' protection and the critical infrastructure and essential services protection monitoring categories (Table 22).

CALCASIEU-SABINE BASIN

One hundred thirty-six census block group centroids are located in the Calcasieu-Sabine Basin study area. Of these, 102 are located in areas designated by FEMA as having minimal flood risk. These areas (designated as X-zones) are those where flood insurance is not mandatory. Most of these block groups are located along the high ground north of Calcasieu Lake (Figure 70). This includes the urbanized area in and around the city of Lake Charles and also includes the high ground along Interstate 10, which runs east to west through Lake Charles. There is little structural protection in Calcasieu-Sabine Basin (Figure 71). The only area protected by levees is the natural area north of the communities of Cameron and Creole. Otherwise, there are vulnerable populations south of Lake Charles including the coastal communities of Cameron and Holly Beach and the community of Hackberry near Calcasieu Lake. It is important to note that the block group counts provided here are based on the population-weighted centroids of the block groups. While this allows us to note where the majority of the census block group's population resides, portions of that block group population may reside in a different flood risk zone.

MERMENTAU BASIN

Eighty-one census block group centroids are located in the Mermentau Basin study area. Of these, 54 are located in areas designated by FEMA as having minimal flood risk. These areas (designated as X-zones) are those where flood insurance is not mandatory. Most of these block groups are located atop the high ground north of Grand Lake and White Lake (Figure 72). The towns along the Interstate 10 and U.S. Highway 90 corridors are

mostly located in minimal at-risk areas. Structural protection is located in the southwest part of Mermentau Basin south of the unincorporated community of Hayes (Figure 73). The levees and polders offer protection to agriculture, aquaculture, and natural areas there. It is important to note that the block group counts provided here are based on the population-weighted centroids of the block groups. While this allows us to note where the majority of the census block group's population resides, portions of that block group population may reside in a different flood risk zone.

TECHE-VERMILION BASIN

Two hundred eleven census block group centroids are located in the Teche-Vermilion Basin study area. Of these, 151 are located in areas designated by FEMA as having minimal flood risk. These areas (designated as X zones) are those where flood insurance is not mandatory. Most of these block groups are located along a natural ridge adjacent to the Vermilion River and Bayou Teche (Figure 74). Block groups in the Lafayette area are nearly all in minimal at-risk areas. These urban areas and the communities along the U.S. Highway 90 corridors have

lower flood risk than more remote areas. The eastern border of the Teche-Vermilion Basin is heavily fortified with levees and polders along the Atchafalaya Basin area (Figure 75) and exist to provide direct protection for nearby communities. The community of Abbeville in the southwest corner of the basin also has strong levee protection. It is important to note that the block group counts provided here are based on the population-weighted centroids of the block groups. While this allows us to note where the majority of the census block group's population resides, portions of that block group population may reside in a different flood risk zone.

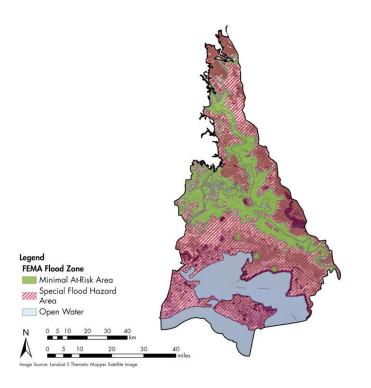
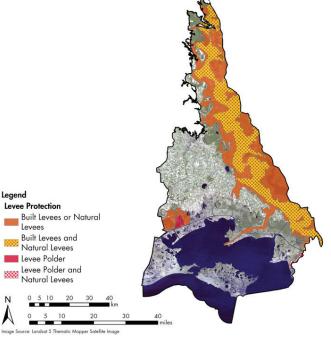



Figure 74. Flood risk in Teche-Vermilion Basin.

Site locations for functional communities in Teche-Vermilion Basin based upon flood risk derived from FEMA Flood Insurance Risk Maps. Special Flood Hazard Areas consist of the FEMA 100-year floodplain and V-zones.

Figure 75. Levee protection in Teche-Vermilion Basin.

Site locations for functional communities in Teche-Vermilion Basin based upon presence of natural levees, constructed levees, and levee polders.

ATCHAFALAYA BASIN

Nineteen census block group centroids are located in the Atchafalaya Basin study area. Of these, 13 are located in areas designated by FEMA as having minimal flood risk. These areas (designated as X-zones) are those where flood insurance is not mandatory. Nearly all of these block groups have some form of structural protection given the high potential for flooding within the Atchafalaya Basin (Figure 76). The developed areas near Morgan City, including Patterson, Bayou Vista, and Berwick, are detailed as minimal at-risk areas. These communities follow

the U.S. Highway 90 corridor on the way from Lafayette to Morgan City. Communities near the Atchafalaya Basin are well-protected by levees and polders (Figure 77). Small fishing communities along the Atchafalaya River are protected, as are the towns bordering the basin. Krotz Springs, Melville, and the communities along Highway 90 to the south require structural protection. It is important to note that the block group counts provided here are based on the population-weighted centroids of the block groups. While this allows us to note where the majority of the census block group's population resides, portions of that block group population may reside in a different flood risk zone.

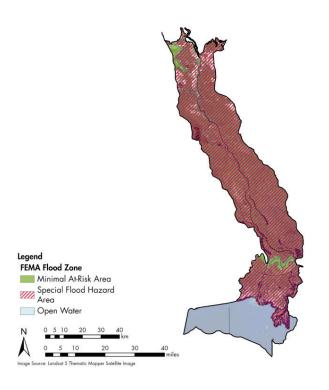
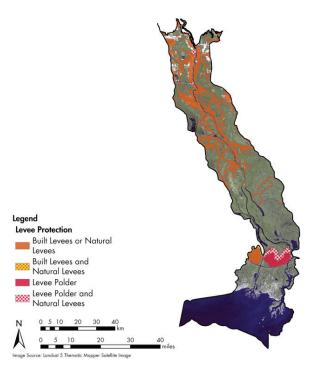



Figure 76. Flood risk in Atchafalaya Basin.

Site locations for functional communities in Atchafalaya Basin based upon flood risk derived from FEMA Flood Insurance Risk Maps. Special Flood Hazard Areas consist of the FEMA 100-year floodplain and V-zones.

Figure 77. Levee protection in Atchafalaya Basin.

Site locations for functional communities in Atchafalaya Basin based upon presence of natural levees, constructed levees, and levee polders.

TERREBONNE BASIN

One hundred ninety-seven census block group centroids are located in the Terrebonne Basin study area. Of these, 104 are located in areas designated by FEMA as having minimal flood risk. These areas (designated as X-zones) are those where flood insurance is not mandatory. Most of these block groups are located atop the high ground along the Mississippi River, Bayou Lafourche, and Bayou Terrebonne (Figure 78). Communities in minimal at-risk areas are almost entirely located along north-south running natural ridges. This includes the high ground along

LA 1 and U.S. Highway 90. Structural protection provided by natural levees, built levees, and levee polders covers nearly the entirety of Terrebonne Basin (Figure 79). Residents in the basin require significant protection from flood hazards in towns near the western edge of the Atchafalaya Basin to the more densely populated communities along Bayou Lafourche and Bayou Terrebonne. It is important to note that the block group counts provided here are based on the population-weighted centroids of the block groups. While this allows us to note where the majority of the census block group's population resides, portions of that block group may reside in a different flood risk zone.

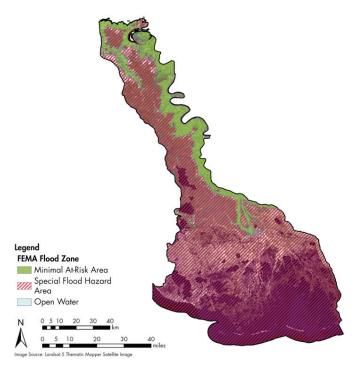
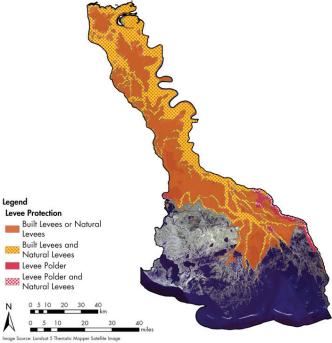
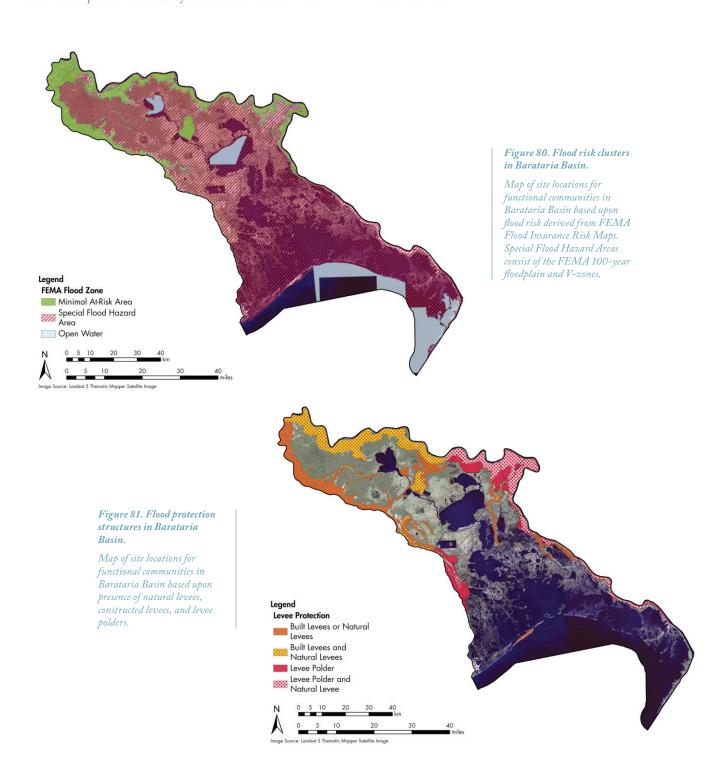



Figure 78. Flood risk in Terrebonne Basin.

Site locations for functional communities in Terrebonne Basin based upon flood risk derived from FEMA Flood Insurance Risk Maps. Special Flood Hazard Areas consist of the FEMA 100-year floodplain and V-zones.

Figure 79. Levee protection in Terrebonne Basin.


Site locations for functional communities in Terrebonne Basin based upon presence of natural levees, constructed levees, and levee polders.

BARATARIA BASIN

Two hundred and thirty-seven census block group centroids are located in the Barataria Basin study area. Of these, 116 are located in areas designated by FEMA as having minimal flood risk. These areas (designated as X zones) are those where flood insurance is not mandatory. The majority of these block groups are located atop the high ground along the Mississippi River (Figure 80). This includes the highly urbanized west bank of the river within the New Orleans metropolitan area. This also includes the high ground along U.S. Highway 90, which bisects the norther portion of the study area and the northern reach

of Bayou Lafourche. In addition to the high ground located in the study area, structural protection features provide additional protection to many residents. Within the Barataria Basin, 192 of the 237 census block groups are located within enclosed levee polder (Figure 81). The majority of this population is located in the west bank communities of Jefferson Parish, as well as in southern Lafourche Parish. It is important to note that the block group counts provided here are based on the population-weighted centroids of the block groups. While this allows us to note where the majority of the census block group's population resides, portions of that block group may reside in a different flood risk zone.

PONTCHARTRAIN REGION

Eight hundred and thirty-seven census block group centroids are located in the Pontchartrain Region study area. The vast majority of these are located within the New Orleans metropolitan regions. In total, 293 census block groups in the Pontchartrain Region are located in areas designated by FEMA as having minimal flood risk. These areas (designated as X zones) are those where flood insurance is not mandatory. The majority of these block groups are located atop the high ground along the Mississippi River and the terraces located north of Lake Pontchartrain (Figure 82). The Metairie and Gentilly Ridges, located within the New Orleans

metropolitan region, are other notable areas identified by FEMA as being at minimal flood risk. Within the Pontchartrain Region, 712 of the 837 census block groups are located within enclosed levee polder (Figure 83). The vast majority of these census block groups are located in the New Orleans metropolitan area, including neighboring Jefferson and St. Bernard parishes. It is important to note that the block group counts provided here are based on the population-weighted centroids of the block groups. While this allows us to note where the majority of the census block group's population resides, portions of that block group may reside in a different flood risk zone.

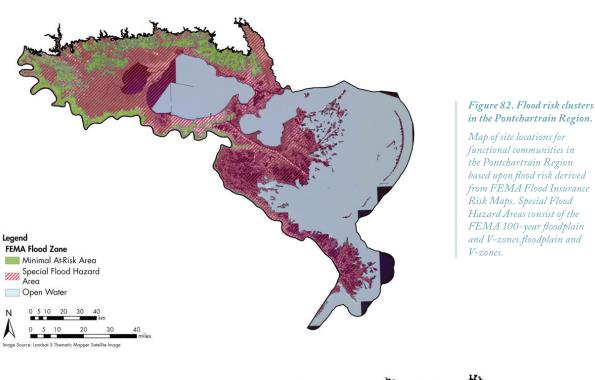
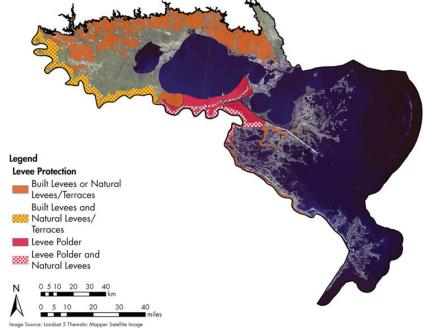



Figure 83. Flood protection structures in the Pontchartrain Region.

Map of site locations for functional communities in the Pontchartrain Region based upon presence of natural levees/terraces, constructed levees, and levee polders.

SURVEY DATA COLLECTION

Specific variables included in the ecosystem dependency monitoring category (Table 22) require the collection of primary survey data within the occupational communities. Many fisheries-dependent communities in coastal Louisiana often rely on a portion of their catch for community wellbeing and subsistence. For primary data collection, any population-weighted ZIP code centroids that fall within the occupational community boundaries should be included as part of the occupational community unit. The ZIP code should be used as the primary unit of analysis, to more effectively target these communities for mail-based questionnaires. The plan recommends sampling these communities on a 5-year cycle, with additional sampling conducted as changing environmental conditions warrant. To assess recreational and subsistence use of natural resources outside of resource-dependent communities, the same methods can be used on a basinwide or coastwide scale. Similarly, if policy needs dictate that specific towns or communities be sampled, the same methods can be utilized to identify ZIP code centroids within defined geographic community boundaries derived from the administrative boundaries.

CALCASIEU-SABINE BASIN

ESTIMATING SAMPLE SIZE

Within Calcasieu-Sabine Basin 10,783 people reside in the seven natural resource-dependent block groups located within the occupational communities identified by Figure 84. This population includes individuals residing in Cameron Parish. These individuals reside in ZIP codes: 70601, 70605, 70611, 70631, and 70647. These ZIP codes include the communities of Lake Charles, Cameron, Iowa, and Moss Bluff.

To survey these communities, assuming a conservative 50/50 split in responses to each question, a sample size of 371 is needed to be 95% confident that the sample estimate is within $\pm 5\%$ of the true population value. The formula for this example is:

$$n = \frac{(10,783)(0.5)(1-0.5)}{(10,783-1)(\frac{0.05}{1.96})^2 + (0.5)(1-0.5)} = 371$$

(EQUATION 5)

Using data from the above example, if it is determined that a sample size of 371 will allow for reasonable precision and confidence for your estimate, and it is estimated that 5% of the mail will be undeliverable and that there will be a response rate of 10%, it is estimated that 3,905 surveys will need to be mailed. The formula for this example is:

Surveys Required =
$$\frac{371}{[(1-0.05)0.10]}$$
 = 3,905

(EQUATION 6)

DETECTING CHANGE USING PRIMARY DATA

To illustrate using the previous example, if the completed sample size (n) is 500 and the population size (n) is 10,783, the margin of error (i.e., sampling error) at the 95% confidence interval with a 50/50 split would be 0.043 or \pm 4.3% of the true population value. The formula for this example is:

$$B = 1.96 \sqrt{\frac{0.5(1-0.5)}{500} - \frac{0.5(1-0.5)}{10,783}} = 0.043$$

(EQUATION 7)

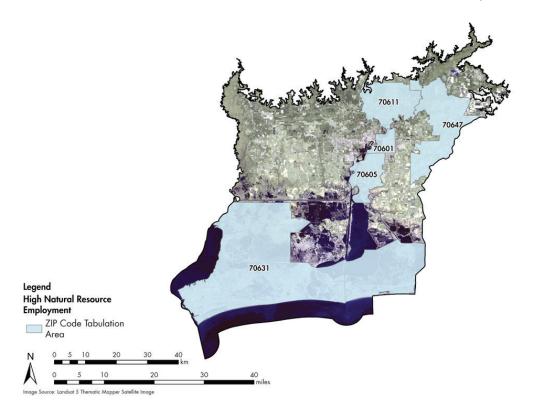


Figure 84. Resource dependent ZIP codes in Calcasieu-Sabine Basin.

Site locations for ZIP codebased functional communities in Calcasieu-Sabine Basin based upon renewable natural resource dependent census block groups.

MERMENTAU BASIN

ESTIMATING SAMPLE SIZE

Within Mermentau Basin, 20,866 people reside in the sixteen natural resource-dependent block groups within the occupational communities identified in Figure 85 This population includes individuals residing in Jefferson Davis, Vermilion, Acadia, and Lafayette Parishes. These census block groups are included in ZIP codes: 70510, 70526, 70529, 70534, 70542, 70543, 70548, 70549, 70559, and 70591. These ZIP codes include the communities of Welsh, Roanoke, Lake Arthur, Lacassine, Gueydan, Estherwood, Mermentau, Morse, Iota, and Duson. To survey these communities, assuming a conservative 50/50 split in responses to each question, a sample size of 377 is needed to be 95% confident that that sample estimate is within ±5% of the true population value. The formula for this example is:

$$n = \frac{(20,866)(0.5)(1-0.5)}{(20,866-1)(\frac{0.05}{1.58})^2 + (0.5)(1-0.5)} = 377$$
(EQUATION 8)

Using data from the above example, if it is determined that a sample size of 377 will allow for reasonable precision and confidence for your estimate, and it is estimated that 5% of the mail will be undeliverable and that there will be a response rate of 10%, it is estimated that 3,971 surveys will need to be mailed. The formula for this example is:

Surveys Required =
$$\frac{377}{[(1-0.05)0.10]}$$
 = 3,971

(EQUATION 9)

DETECTING CHANGE USING PRIMARY DATA

To illustrate using the previous example, if the completed sample size (n) is 500 and the population size (N) is 20,866, the margin of error (i.e., sampling error) at the 95% confidence interval with a 50/50 split would be 0.043 or $\pm 4.3\%$ of the true population value. The formula for this example is:

$$B = 1.96 \sqrt{\frac{0.5(1-0.5)}{500} - \frac{0.5(1-0.5)}{20,866}} = 0.043$$

(EQUATION 10)

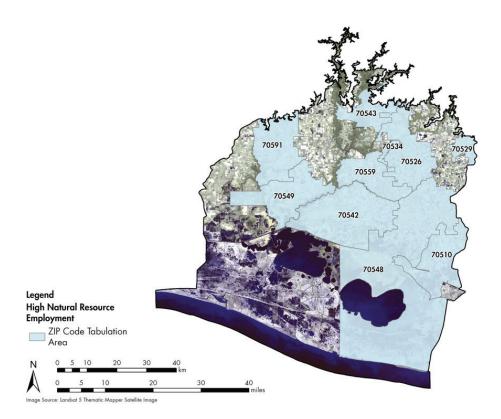


Figure 85. Resource dependent ZIP codes in Mermentau Basin.

Site locations for ZIP codebased functional communities in Mermentau Basin based upon renewable natural resource dependent census block groups.

TECHE-VERMILION BASIN

ESTIMATING SAMPLE SIZE

Within Teche-Vermilion Basin, 25,235 people reside in the twenty natural resource-dependent block groups within the occupational communities identified in Figure 86. This population includes individuals residing in Lafayette, St. Landry, Iberia, St. Mary, and Vermilion Parishes. These individuals reside in ZIP codes: 70506, 70508, 70514, 70528, 70533, 70538, 70544, 70560, 70563, 70589, and 71358. These ZIP codes include the communities of Lafayette, Scott, Palmetto, Avery Island, Lydia, New Iberia, Franklin, Baldwin, Delcambre, Abbeville, and Erath. To survey these communities, assuming a conservative 50/50 split in responses to each question, a sample size of 378 is needed to be 95% confident that that sample estimate is within ±5% of the true population value. The formula for this example is:

$$n = \frac{(25,235)(0.5)(1-0.5)}{(25,235-1)(\frac{0.05}{1.5\%})^2 + (0.5)(1-0.5)} = 378$$
(EQUATION 11)

Using data from the above example, if it is determined that a sample size of 378 will allow for reasonable precision and confidence for your estimate, and it is estimated that 5% of the mail will be undeliverable and that there will be a response rate of 10%, it is estimated that 3,983 surveys will need to be mailed. The formula for this example is:

Surveys Required =
$$\frac{378}{[(1-0.05)0.10]}$$
 = 3,983

(EQUATION 12)

DETECTING CHANGE USING PRIMARY DATA

To illustrate using the previous example, if the completed sample size (n) is 500 and the population size (n) is 25,235, the margin of error (i.e., sampling error) at the 95% confidence interval with a 50/50 split would be 0.043 or $\pm 4.3\%$ of the true population value. The formula for this example is:

$$B = 1.96 \sqrt{\frac{0.5(1-0.5)}{500} - \frac{0.5(1-0.5)}{25,235}} = 0.043$$

(EQUATION 13)

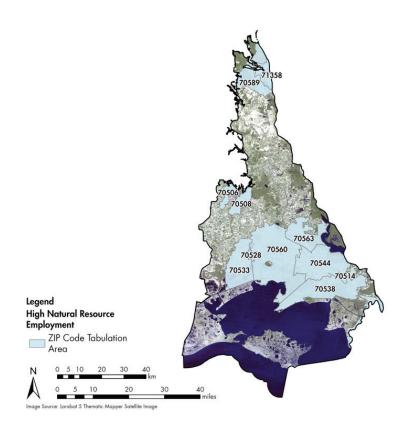


Figure 86. Resource dependent ZIP codes in Teche-Vermilion Basin.

Site locations for ZIP codebased functional communities in Teche-Vermilion Basin based upon renewable natural resource dependent census block groups.

ATCHAFALAYA BASIN

ESTIMATING SAMPLE SIZE

Within Atchafalaya Basin, there are 1,333 people who reside in three natural resource-dependent block group within the occupational communities identified in Figure 87. This population includes individuals residing in Iberville Parish. These individuals reside in ZIP code 70764. This ZIP code includes the unincorporated community of Bayou Sorrel. To survey this community, assuming a conservative 50/50 split in responses to each question, a sample size of 298 is needed to be 95% confident that that sample estimate is within ±5% of the true population value. The formula for this example is:

$$n = \frac{(1,333)(0.5)(1-0.5)}{(1,333-1)(\frac{0.05}{1.96})^2 + (0.5)(1-0.5)} = 298$$
(EQUATION 14)

Using data from the above example, if it is determined that a sample size of 298 will allow for reasonable precision and confidence for your estimate, and it is estimated that 5% of the mail will be undeliverable and that there will be a response rate of 10%, it is estimated that 3,141 surveys will need to be mailed. The formula for this example is:

Surveys Required =
$$\frac{298}{[(1-0.05)0.10]}$$
 = 3,141

(EQUATION 15)

DETECTING CHANGE USING PRIMARY DATA

To illustrate using the previous example, if the completed sample size (n) is 500 and the population size (n) is 1,333, the margin of error (i.e., sampling error) at the 95% confidence interval with a 50/50 split would be 0.035 or $\pm 3.5\%$ of the true population value. The formula for this example is:

$$B = 1.96 \sqrt{\frac{0.5(1-0.5)}{500} - \frac{0.5(1-0.5)}{1,333}} = 0.035$$

(EQUATION 16)

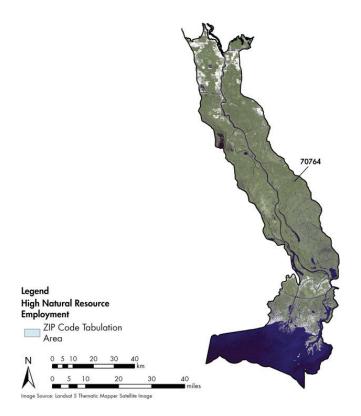


Figure 87. Resource dependent ZIP codes in Atchafalaya Basin.

Site locations for ZIP codebased functional communities in Atchafalaya Basin based upon renewable natural resource dependent census block groups.

TERREBONNE BASIN

ESTIMATING SAMPLE SIZE

Within Terrebonne Basin, there are 43,741 people who reside in the twenty-nine natural resource-dependent block groups within the occupational communities identified in Figure 88. This population includes individuals residing in Lafourche, Terrebonne, Assumption, Iberville, West Baton Rouge, and Pointe Coupee Parishes. These individuals reside in ZIP codes: 70301, 70341, 70344, 70346, 70353, 70354, 70357, 70360, 70363, 70364, 70373, 70377, 70397, 70732, 70749, 70755, 70767, 70788. These ZIP codes include the communities of Golden Meadow, Larose, Thibodaux, Lafourche Crossing, Galliano, Gray, Bayou Blue, Bayou Cane, Montegut, Chauvin, Dulac, Houma, Belle Rose, White Castle, Crescent, Plaquemine, Grosse Tete, Livonia, Fourdoche, Erwinville, and Ventress. To survey these communities, assuming a conservative 50/50 split in responses to each question, a sample size of 381 is needed to be 95% confident that that sample estimate is within ±5% of the true population value. The formula for this example is:

$$n = \frac{(43,741)(0.5)(1-0.5)}{(43,741-1)(\frac{0.05}{1.90})^2 + (0.5)(1-0.5)} = 381$$

(EQUATION 17)

Using data from the above example, if it is determined that a sample size of 381 will allow for reasonable precision and confidence for your estimate, and it is estimated that 5% of the mail will be undeliverable and that there will be a response rate of 10%, it is estimated that 4,008 surveys will need to be mailed. The formula for this example is:

Surveys Required =
$$\frac{381}{[(1-0.05)0.10]}$$
 = 4,008

(EQUATION 18)

DETECTING CHANGE USING PRIMARY DATA

To illustrate using the previous example, if the completed sample size (n) is 500 and the population size (n) is 43,471, the margin of error (i.e., sampling error) at the 95% confidence interval with a 50/50 split would be 0.044 or $\pm 4.4\%$ of the true population value. The formula for this example is:

$$B = 1.96 \sqrt{\frac{0.5(1-0.5)}{500} - \frac{0.5(1-0.5)}{57,460}} = 0.044$$

(EQUATION 19)

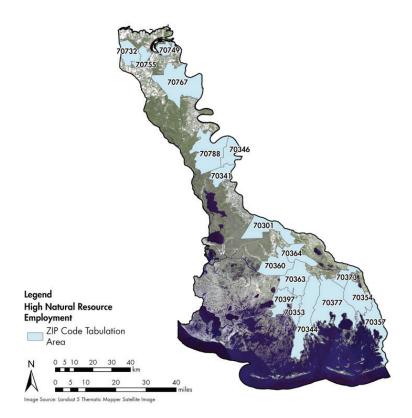


Figure 88. Resource dependent ZIP codes in Terrebonne Basin.

Site locations for ZIP codebased functional communities in Terrebonne Basin based upon renewable natural resource dependent census block groups.

BARATARIA BASIN

ESTIMATING SAMPLE SIZE

Within Barataria Basin, there are 8,439 people who reside in the fifteen natural resource-dependent block groups within the occupational communities identified in Figure 89. This population includes individuals residing in Plaquemines Parish (seven block groups) and Jefferson Parish (five block groups). These census block groups are included in ZIP codes: 70036, 70038, 70041, 70050, 70067, 70091, and 70358. These ZIP codes include the communities of Barataria, Grand Isle, Jean Lafitte, and Lafitte in Jefferson Parish and Bootheville, Buras, Empire, Triumph, and Venice in Plaquemines Parish. To survey these communities, assuming a conservative 50/50 split in responses to each question, a sample size of 367 is needed to be 95% confident that that sample estimate is within ±5% of the true population value. The formula for this example is:

$$n = \frac{(8,439)(0.5)(1-0.5)}{(8,439-1)(\frac{0.05}{1.98})^2 + (0.5)(1-0.5)} = 367$$
(EQUATION 20)

Using data from the above example, if it is determined that a sample size of 381 will allow for reasonable precision and confidence for your estimate, and it is estimated that 5% of the mail will be undeliverable and that there will be a response rate of 10%, it is estimated that 4,008 surveys will need to be mailed. The formula for this example is:

Surveys Required =
$$\frac{367}{[(1-0.05)0.10]}$$
 = 3,868

(EQUATION 21)

DETECTING CHANGE USING PRIMARY DATA

To illustrate using the previous example, if the completed sample size (n) is 500 and the population size (n) is 43,471, the margin of error (i.e., sampling error) at the 95% confidence interval with a 50/50 split would be 0.044 or \pm 4.4% of the true population value. The formula for this example is:

$$B = 1.96 \sqrt{\frac{0.5(1-0.5)}{500} - \frac{0.5(1-0.5)}{8,439}} = 0.043$$

(EQUATION 22)

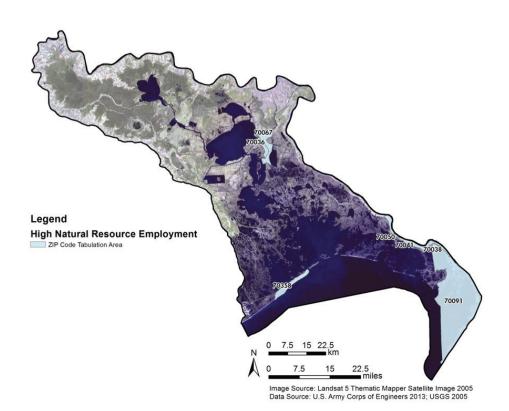


Figure 89. Resource dependent block groups in Barataria Basin.

Map of site locations for ZIP code-based functional communities in Barataria Basin based upon renewable natural resource dependent census block groups.

PONTCHARTRAIN REGION

ESTIMATING SAMPLE SIZE

Within the Pontchartrain Region, there are 11,078 people who reside in the three natural resource-dependent block groups within the occupational communities identified in Figure 90. This population includes individuals residing in two ZIP code areas in St. Bernard Parish. ZIP Code 70092 includes the community of Violet as well as a portion of both Meraux and Poydras. Zip Code 70085 includes a portion of Poydras as well as the small unincorporated communities such as Delacroix, Yscloskey, and Reggio. To survey residents of these ZIP codes, assuming a conservative 50/50 split in responses to each question, a sample size of 371 is needed to be 95% confident that that sample estimate is within ±5% of the true population value. The formula for this example is:

$$n = \frac{(11,078)(0.5)(1-0.5)}{(11,078-1) (\frac{0.05}{1.56})^2 + (0.5)(1-0.5)} = 371$$
(EQUATION 23)

Using data from the above example, if it is determined that a sample size of 381 will allow for reasonable precision and confidence for your estimate, and it is estimated that 5% of the mail will be undeliverable and that there will be a response rate of 10%, it is estimated that 4,008 surveys will need to be mailed. The formula for this example is:

Surveys Required =
$$\frac{371}{[(1-0.05)0.10]}$$
 = 3,908

(EQUATION 24)

DETECTING CHANGE USING PRIMARY DATA

To illustrate using the previous example, if the completed sample size (n) is 500 and the population size (n) is 43,471, the margin of error (i.e., sampling error) at the 95% confidence interval with a 50/50 split would be 0.044 or $\pm 4.4\%$ of the true population value. The formula for this example is:

$$B = 1.96 \sqrt{\frac{0.5(1-0.5)}{500} - \frac{0.5(1-0.5)}{11,078}} = 0.043$$

(EQUATION 25)

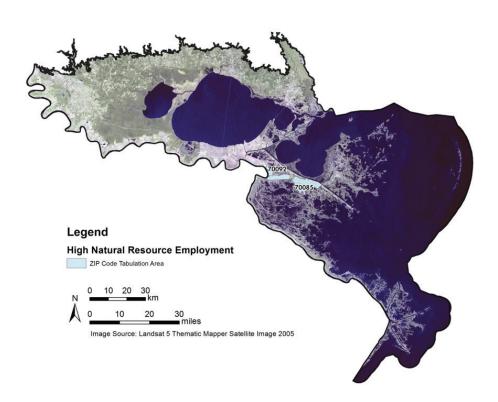


Figure 90. Resource dependent block groups in the Pontchartrain Region.

Map of site locations for ZIP code-based functional communities in the Pontchartrain Region based upon renewable natural resource-dependent census block groups.

ALL BASINS

ESTIMATING SAMPLE SIZE

Within the coastwide SWAMP study area, 121,205 people reside in 93 natural resource-dependent block groups within the occupational communities. This population includes individuals residing in 54 different ZIP codes. To survey residents of these ZIP codes, assuming a conservative 50/50 split in responses to each question, a sample size of 383 is needed to be 95% confident that that sample estimate is within $\pm 5\%$ of the true population value. The formula for this example is:

$$n = \frac{(121,205)(0.5)(1-0.5)}{(121,205-1)(\frac{0.05}{1.56})^2 + (0.5)(1-0.5)} = 383$$

(EQUATION 26)

Using a sample size of 383, and an estimation that 5% of the mail will be undeliverable and that there will be a response rate of 10%, it is estimated that 4,031 surveys will need to be mailed. The formula for this example is:

Surveys Required =
$$\frac{383}{[(1-0.05)0.10]}$$
 = 4,031

(EQUATION 27)

DETECTING CHANGE USING PRIMARY DATA

To illustrate using the previous example, if the completed sample size (n) is 500 and the population size (n) is 121,205, the margin of error (i.e. sampling error) at the 95% confidence interval with a 50/50 split would be 0.044 or $\pm 4.4\%$ of the true population value. The formula for this example is:

$$B = 1.96 \sqrt{\frac{0.5(1-0.5)}{500} - \frac{0.5(1-0.5)}{121,205}} = 0.044$$

(EQUATION 28)

According to these calculations, it is most cost-efficient to send out surveys on a coastwide scale rather than taking a basin-by-basin approach when assessing overall coastal change.

PATH FORWARD

This report describes an integrated plan for monitoring the natural and human systems within the coastal basins of Louisiana and is the final report in the design series. The goal of SWAMP is to obtain repeated long-term (e.g., years to decades) measurements that can serve as a baseline to detect change that may result from a variety of sources, including large-scale restoration and protection projects, environmental disturbances, changing climate, and other major drivers that impact the coupled human-natural system.

A rigorous statistical analysis and thorough reviews of previous planning and monitoring efforts resulted in the development of this comprehensive design. The SWAMP design relies heavily on the use of existing data, thus, coordination with other agencies and CPRA's existing monitoring programs (e.g., BICM, CRMS) is critical to the success. Collectively, the variables provide an understanding in a holistic sense of the potential impacts on system dynamics from a variety of drivers and are intended to be indicative rather than exhaustive of system condition. As a result, there were some aspects of the system not included in this design, such as monitoring of wildlife species, submerged aquatic vegetation, and economic impacts on local businesses, that warrant additional discussion with subject matter experts prior to their inclusion to determine their relevance in the SWAMP framework and to the coastal protection and restoration program. Further, the exclusion of any variable does not necessarily mean the variables should be excluded from any project-specific monitoring.

For effective implementation of this design, SWAMP will require development of quality control and quality assurance protocols, specific standardized operating procedures for each of the field and laboratory data collection efforts, a data management plan that utilizes the CPRA Coastal Information Management System (CIMS), and a reporting framework that will contribute to decision making and reducing uncertainty in management actions. Protocols and standardized operating procedures have previously been developed for many of the major monitoring programs and research efforts in coastal Louisiana and could serve as a guide for many of the variables identified herein. Additionally, the SWAMP implementation team should coordinate with Deepwater Horizon-type monitoring programs (e.g. NRDA, RESTORE Council) that currently collect data in coastal Louisiana to ensure consistency in approaches, efficiencies in monitoring efforts, and ensure data collected can inform programmatic evaluations and reporting. Currently, the SWAMP design has been implemented in the Barataria Basin and Pontchartrain region and the Western Basins will follow.

Several monitoring programs exist in coastal Louisiana as documented in the SWAMP inventory geodatabaseⁱ and are summarized in the Introduction. Several of these efforts have explored indicator development for use in evaluating coastal restoration efforts (Cretini et al., 2012; Snedden & Swenson, 2012; Stagg et al., 2013) and coastal protection efforts (Hijuelos & Reed, 2013a), evaluating water quality condition (Louisiana Department of Environmental Quality, 2008), and quantifying success of the fish and wildlife conservation strategy (Lester et al., 2005). In many cases, it is unknown whether these studies employed probability-based or nonprobability-based methods in the selection of sites. In order to integrate these existing monitoring programs for analysis of system change, the use of nonprobability-based designs in conjunction with the probability-based design proposed herein warrants additional discussion with statistical experts and those from other largescale monitoring programs that have faced similar issues. The statistical literature provides some guidance on appropriate methodologies for combining datasets from nonprobability- and probability-based designs (Brus & De Gruijter, 2003; Cox & Piegorsch, 1996; Elliott, 2009), but there is no general consensus. The analysis of existing data generated from sites in which probability-based methods were used in selecting site locations, in conjunction with new data generated from sites in which the GRTS was used, does not pose any critical statistical concerns. This does not imply that the GRTS design can be applied post hoc to designs created using other probability-based methods.

Each of the monitoring variables utilized in SWAMP provides important or complementary supplemental information that may be critical to decision makers. Changes in data streams in and of themselves, however, are not sufficient to fully assess current and future changes in coastal systems; formal synthesis and quantitative analyses are needed to systematically assess these data streams and make informed management decisions (Levin et al., 2009; Williams et al., 2009). To fully integrate these data streams, it will be necessary to assess the interaction pathways between the monitoring variables, including both human and natural system interactions. These interaction pathways must consider long-term and short-term responses to coastal change. Some of the identified monitoring natural system variables, for example, may have more short-term responses (e.g., phytoplankton biomass as indicated by chlorophyll a) and others may have long-term responses (e.g., wetland soil organic matter).

As SWAMP evolves over time, the information gathered will allow for new statistical analyses to be conducted, such as the power analyses, to assess if the original number of monitoring sites recommended is still needed to detect a change. That change should also consider what is ecologically meaningful and that will likely depend upon the monitoring variable and the basin. The SWAMP design is meant to be adaptable. Internal CPRA monitoring data has been gathered for the Calcasieu and Mermentau Basins, for example, using the existing CRMS

network. These data and subsequent CPRA monitoring reports can be used to inform and refine the SWAMP monitoring plan. To assure the continued utility of SWAMP, Adaptive Management (AM) should be used to systematically re-assess the usefulness of the initial prioritized monitoring variables, number of sites, and location of these sites. AM provides a useful framework to consider these critical decisions and a way to compile the wealth of information produced by SWAMP that will contribute to the "knowledge base" (The Water Institute of the Gulf, 2013). The use of AM has been proposed for large scale ecosystem management to inform management of entire systems (Samhouri et al., 2013; Schreiber et al., 2004), including coupled natural-human systems such as those monitored in SWAMP. Many of the concepts presented in AM have already been initiated at different scales for coastal Louisiana, through multiple efforts by several agencies and organizations. Drivers and pressures upon the system were identified for the Barataria Basin (Northern Gulf Institute Ecosystem Team, 2010) and a conceptual framework of the key system drivers was developed on a coastwide scale as part of a related SWAMP planning effort (Hijuelos et al., 2013). CPRA developed an adaptive management plan for inclusion in the 2017 Coastal Master Plan (Hijuelos and Reed 2017) and is currently developing an AM implementation plan in collaboration with the Louisiana Trustee Implementation Group under the Deepwater Horizon Natural Resource Damage Assessment.

The goal of the current CPRA AM plan is to iteratively incorporate new data and information into each step of CPRA's project- and programmatic-level decision-making processes in order to reduce scientific uncertainty in the development, evaluation, and formulation of projects, improve programmatic decisions, and inform the establishment or refinement of portfolios of projects, such as the six yearly review cycle of the coastal master plan. The CPRA AM framework is a formalized, structured approach that identifies the pathways and mechanisms by which monitoring data is integrated into various activities related to high level goals. The data collected by SWAMP should be a key component of this information integration. Similarly, the CPRA AM framework should be used to continually assess the SWAMP monitoring design and variables and new information becomes available through the implementation of SWAMP.

Finally, data gathered through SWAMP can provide a powerful tool to assess program and project performance. Report cards at CRMS sites, CWPPRA projects, basin, and coastwide scales have already been developed using indices developed from CRMS data to assess wetland hydrology, vegetation, and soil. The development of ecological- and/or management-related thresholds for the identified indicators have not yet been developed, but this could be achieved through analysis of existing data and literature synthesis of relevant ecosystem monitoring frameworks. Upon the completion of thresholds, the application of the SWAMP monitoring framework into a reporting framework could be applied in a Louisiana coastal system report card, to regularly assess basinwide and coastwide performance in achieving sustainable landscapes and resilient communities (Figure 91).

i For more information on the SWAMP GIS data inventory, contact info@ thewaterinstitute.org.

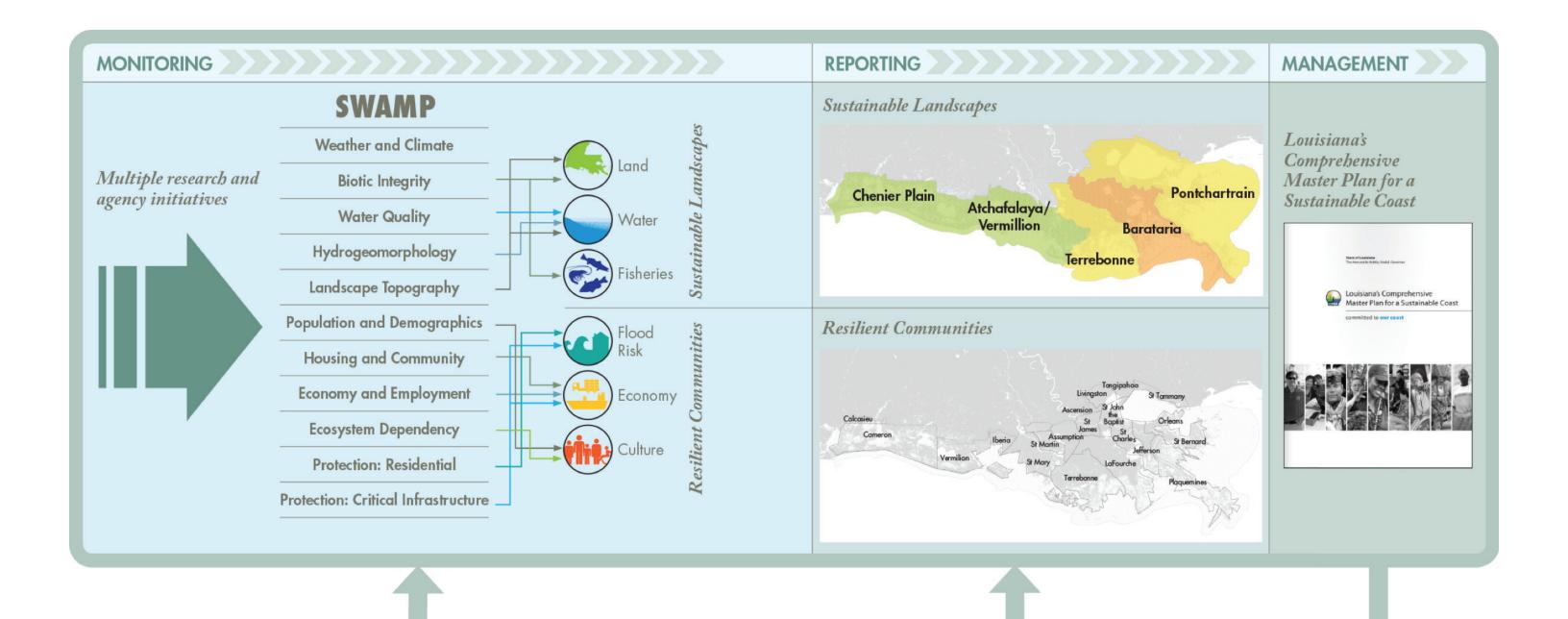


Figure 91. Application of the SWAMP monitoring framework to a report card for coastal Louisiana.

More information on the concept of developing a report card for coastal Louisiana can be found in Hijuelos & Reed (2013b).

BIBLIOGRAPHY

- Adamack, A.T., Stow, C.A., Mason, D.M., Rozas, L.P., & Minello, T.J. (2012). Predicting the effects of freshwater diversions on juvenile brown shrimp growth and production: a Bayesian-based approach. Marine Ecology Progress Series, 444, 155–173.
- Adrien, N. (2004). Computational Hydraulics and Hydrology: An Illustrated Dictionary. Boca Raton, FL: CRC Press.
- Allison, M.A., Vosburg, B.M., Ramirez, M.T., & Meselhe, E.A. (2013). Mississippi River channel response to the Bonnet Carré Spillway opening in the 2011 flood and its implications for the design and operation of river diversions. Journal of Hydrology, 477, 104–118.
- Anderson, D.M., Glibert, P.M., & Burkholder, J.M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries, 25(4b), 704–726.
- Angermeier, P.L., & Karr, J.R. (1994). Biological Integrity Versus Biological Diversity as Policy Directives: Protecting Biotic Resources. Bioscience, 44(10), 690–697.
- Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.
- Applied Coastal Research and Engineering. (2018). Determining Recent Subsidence Rates for Barataria Basin, Louisiana: Implications for Engineering and Design of Coastal Restoration Projects.
- https://cims.coastal.louisiana.gov/RecordDetail.aspx?Root=0&sid=21362.
- Arundel, S.T., Archuleta, C.M., Phillips, L.A., Roche, B.L., & Constance, E.W. (2015). One-meter digital elevation model specification: U.S. Geological Survey Techniques and Methods, book 11, chap. B7, 25 p. with appendixes, http:// dx.doi.org/10.3133/tm11B7.
- Banks, P., Berrigan, M., Choudhury, A., Craig, L., Diaz, D.,
 Kern, F., King, J., Marshall, M., Robinson, L., Steimle, F.,
 Takacs, R., & Wikfors, G. (2007). Status review of the Eastern
 Oyster (Crassostrea virginica) (No. NOAA Technical Memo
 NMFS F/SPO-88) (p.105). Report to the National Marine
 Fisheries Service.
- Battaglia, L.L., Woodrey, M.S., Peterson, M.S., Dillon, K.S.,
 & Visser, J.M. (2012). Wetlands of the Northern Gulf Coast.
 In D.P. Batzer & A.H. Baldwin (Eds.), Wetland Habitats of North America: Ecology and Conservation Concerns.
 Berkeley, CA: University of California Press.
- Bazzaz, F. (1990). The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics, 21, 167–196.

- Bharadwaj, L., Lavergne, D.R., & Ogunyinka, E.O. (2012). Louisiana Commercial Oyster Dealers: Analyzing Point Of First Sales Data For The Louisiana Commercial Oyster Sector: 2000-2009. Baton Rouge, LA: Louisiana Department of Wildlife and Fisheries.
- Black, R., Adger, W.N., Arnell, N.W., Dercon, S., Geddes, A., & Thomas, D. (2011). The effect of environmental change on human migration. Global Environmental Change, 21, S3–S11.
- Blahna, D.J., Carr, D., & Jakes, P. (2003). Using social community as a measurement unit in conservation planning and ecosystem management. United States Department of Agriculture Forest Service General Technical Report PNW, 59–80.
- Blanchard, T.C., Tolbert, C., & Mencken, C. (2012). The health and wealth of US counties: how the small business environment impacts alternative measures of development. Cambridge Journal of Regions, Economy and Society, 5(1), 149–162.
- Booth, J.G., Miller, R.L., McKee, B.A., & Leathers, R.A. (2000). Wind-induced bottom sediment resuspension in a microtidal coastal environment. Continental Shelf Research, 20(7), 785–806.
- Boyer, J.N., Kelble, C.R., Ortner, P.B., & Rudnick, D.T. (2009). Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecological Indicators, 9(6), S56–S67.
- Bricker, S.B., Clement, C.G., Pirhalla, D.E., Orlando, S.P., & Farrow, D.R.G. (1999). National Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the Nation's Estuaries (p.71). Silver Spring, MD: NOAA, National Ocean Service, Special Projects Office and the National Centers for Coastal Ocean Science.
- Brus, D., & De Gruijter, J. (2003). A method to combine non-probability sample data with probability sample data in estimating spatial means of environmental variables. Environmental Monitoring and Assessment, 83(3), 303–317.
- Burdge, R.J. (1994). A conceptual approach to social impact assessment: collection of writings by Rabel J. Burdge and colleagues. Social Ecology Press Middleton, Wisconsin.
- Burton, C., & Cutter, S.L. (2008). Levee failures and social vulnerability in the Sacramento- San Joaquin Delta area, California. Natural Hazards Review, 9(3), 136–149.
- Byrd, K. B., O'Connell, J. L., Di Tommaso, S., & Kelly, M. (2014). Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation. Remote Sensing of Environment, 149, 166–180.
- Caffey, R., Kazmierczak, R., Diop, H., & Keithly, W. (2006).
 Estimating the economic damage of Hurricanes Katrina and Rita on commercial and recreational fishing industries.
 Presented at the American Agricultural Economics
 Association Annual Meeting, Portland, OR.

- Cahoon, D.R., Hensel, P.F., Spencer, T., Reed, D.J., McKee, K.L., & Saintilan, N. (2006). Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In D.J.T.A.Verhoeven, D.B. Beltman, D.R. Bobbink, & D.D.F. Whigham (Eds.), Wetlands and Natural Resource Management (pp.271–292). Springer-Verlag Berlin Heidelberg.
- Cahoon, D.R., Perez, B.C., Segura, B.D., & Lynch, J.C. (2011). Elevation trends and shrink–swell response of wetland soils to flooding and drying. Estuarine, Coastal and Shelf Science, 91, 463–474.
- Callihan, J.L., Cowan, J.H., & Harbison, M.D. (2013). Sex Differences in Residency of Adult Spotted Seatrout in a Louisiana Estuary. Marine and Coastal Fisheries, 5(1), 79–92.
- Campanella, R. (2010). Delta Urbanism: New Orleans. Chicago, IL: American Planning Association.
- Carpenter, S. R., Mooney, H. A., Agard, J., Capistrano, D., DeFries, R. S., Díaz, S., Dietz, T., Duraiappah, A. K.,
 Oteng-Yeboah, A., Pereira, H. M., Perrings, C., Reid, W. V., Sarukhan, J., Scholes, R. J., & Whyte, A. (2009). Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences, 106(5), 1305–1312.
- Census Bureau, U.S. (2008). A compass for understanding and using American Community Survey data: What general data users need to know.
- Chapin, F. S., Lovecraft, A. L., Zavaleta, E. S., Nelson, J., Robards, M. D., Kofinas, G. P., Trainor, S. F., Peterson, G. D., Huntington, H. P., & Naylor, R. L. (2006). Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate. Proceedings of the National Academy of Sciences, 103(45), 16637–16643.
- Charnley, S., & Stuart, C. (2006). Socioeconomic Monitoring Results Volume VI: Program Development and Future Directions. United States Department of Agriculture Forest Service General Technical Report PNW, 649(6).
- Chesney, E.J., Baltz, D.M., & Thomas, R.G. (2000). Louisiana estuarine and coastal fisheries and habitats: perspectives from a fish's eye view. Ecological Applications, 10(2), 350–366.
- Cloern, J.E. (1987). Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research, 7(11), 1367–1381.
- Coastal Protection and Restoration Authority. (2014). 2017 Coastal Master Plan: Model Improvement Plan (No. Version II) (p.52). Baton Rouge, LA: prepared by The Water Institute of the Gulf.
- Colten, C.E. (2014). Scenario Building Workshops. Baton Rouge, LA: The Water Institute of the Gulf.
- Colten, C.E., & Hemmerling, S.A. (2014). Social Impact Assessment Methodology for Diversions and Other Louisiana Coastal Master Plan Restoration and Protection Projects. Baton Rouge, LA: The Water Institute of the Gulf.

- Couvillion, B.R., Beck, H., Schoolmaster, D., & Fischer, M. (2017). Land area change in coastal Louisiana from 1932 to 2016 (Scientific Investigations Map No.3381) (p.26). U.S. Geological Survey.
- Couvillion, B.R., Steyer, G.D., Wang, H., Beck, H.J., & Rybczyk, J.M. (2013). Forecasting the effects of coastal protection and restoration projects on wetland morphology in coastal Louisiana under multiple environmental uncertainty scenarios. Journal of Coastal Research, 67, 29–50.
- Cox, L., & Piegorsch, W.W. (1996). Combining environmental information.i: environmental monitoring, measurement and assessment. Environmetrics, 7(3), 299–308.
- CPRA (Coastal Protection and Restoration Authority). (2012). Louisiana's Comprehensive Master Plan for a Sustainable Coast (p.188). Baton Rouge, Louisiana.
- CPRA (Coastal Protection and Restoration Authority). (2017). Louisiana's Comprehensive Master Plan for a Sustainable Coast (p.184). Baton Rouge, Louisiana.
- Cretini, K.F., Visser, J., Krauss, K., & Steyer, G. (2012).

 Development and use of a floristic quality index for coastal Louisiana marshes. Environmental Monitoring and Assessment, 184, 2389–2403.
- Cutter, S.L., Boruff, B.J., & Shirley, W.L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261.
- Cutter, S.L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences, 105(7), 2301–2306.
- Day, J.W., Jr., Lane, R., Moerschbaecher, M., DeLaune, R., Mendelssohn, I., Baustian, J., & Twilley, R. (2013). Vegetation and soil dynamics of a Louisiana estuary receiving pulsed Mississippi river water following Hurricane Katrina. Estuaries and Coasts, 36, 665–682.
- DeLaune, R.D., Pezeshki, S.R., & Patrick Jr, W.H. (1987). Response of coastal plants to increase in submergence and salinity. Journal of Coastal Research, 3(4), 535–546.
- Dillman, D.A., Phelps, G., Tortora, R., Swift, K., Kohrell, J., Berck, J., & Messer, B.L. (2009). Response rate and measurement differences in mixed-mode surveys using mail, telephone, interactive voice response (IVR) and the Internet. Social Science Research, 38(1), 1–18.
- Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30(9), 1935–1948.
- Doak, S.C., & Kusel, J. (1996). Well-being in forest-dependent communities, Part II: a social assessment focus (pp.375–402).
 University of California, Davis Centers for Water and Wildland Resources.

- Dortch, Q., Parsons, M.L., Rabalais, N.N., & Turner,
 R.E. (1999). What is the threat of harmful algal blooms
 in Louisiana coastal waters. In L.P.Rozas, J.A.Nyman,
 C.E.Proffitt, N.N.Rabalais, D.J.Reed, & R.E.Turner, Recent
 Research in Coastal Louisiana: Natural System Function and
 Response to Human Influence (pp.134–144). Baton Rouge,
 LA: Louisiana Sea Grant Program.
- Doyle, T.W., O'Neil, C.P., Melder, M.P.V., From, A.S., & Palta, M.M. (2007). Tidal freshwater swamps of the southeastern United States: Effects of land use, hurricanes, sea-level rise, and climate change. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States (pp.1–28). Springer.
- Elliott, M. (2009). Combining Data from Probability and Non-Probability Samples Using Pseudo-Weights. Survye Practice, 2(6), 1–7.
- Fagherazzi, S., & Wiberg, P.L. (2009). Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical Research, 114.
- Fancy, S.G., & Bennetts, R.E. (2012). Institutionalizing an effective long-term monitoring program in the US National Park Service. In R.A.Gitzen, J.J.Millspaugh, A.B.Cooper, & D.S.Light (Eds.), Design and analysis of long-term ecological monitoring studies (pp.481–497). New York, NY: Cambridge University Press.
- Fancy, S., Gross, J., & Carter, S. (2009). Monitoring the condition of natural resources in US national parks. Environmental Monitoring and Assessment, 151, 161–174.
- Fennessy, M.S., Jacobs, A.D., & Kentula, M.E. (2007). An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands, 27(3), 543–560.
- Fernandez, R.M. (1994). Race, Space, and Job Accessibility: Evidence from a Plant Relocation. Economic Geography, 70(4), 390.
- Field, S.A., O'Connor, P.J., Tyre, A.J., & Possingham, H.P. (2007). Making monitoring meaningful. Austral Ecology, 32(5), 485–491.
- Field, S.A., Tyre, A.J., & Possingham, H.P. (2005). Optimizing allocation of monitoring effort under economic and observational constraints. Journal of Wildlife Management, 69(2), 473–482.
- Fleming, C.M., & Bowden, M. (2009). Web-based surveys as an alternative to traditional mail methods. Journal of Environmental Management, 90(1), 284–292.
- Folse, T.M., West, J.L., Hymel, M.K., Troutman, J.P., Sharp, L.A., Weifenbach, D., McGinnis, T., & Rodrigue, L.B. (2008). A Standard Operating Procedures Manual for the Coast-wide Reference Monitoring System-Wetlands: Methods for Site Establishment, Data Collection, and Quality Assurance/ Quality Control (p.191). Baton Rouge, LA: Louisiana Coastal Protection and Restoration Authority, Office of Coastal Protection and Restoration.

- Folse, Todd M, Leigh A Sharp, Jonathan L West, Melissa K Hymel, P Troutman, Thomas E McGinnis, Dona Weifenbach, et al. (2018). A Standard Operating Procedures Manual for the Coastwide Reference Monitoring System-Wetlands: Methods for Site Establishment, Data Collection, and Quality Assurance/Quality Control (p. 226). Baton Rouge, LA: Louisiana Coastal Protection and Restoration Authority.
- French, J. (2006). Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Marine Geology 235, 119-136.
- Georgiou, I.Y., FitzGerald, D.M., & Stone, G.W. (2005). The impact of physical processes along the Louisiana coast. Journal of Coastal Research, Special Issue 54, 72–89.
- Getis, A., & Ord, J.K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189–206.
- Gitzen, R.A., & Millspaugh, J.J. (2012). Ecological Monitoring. In R.A.Gitzen, J.J.Millspaugh, A.B.Cooper, & D.S. Light (Eds.), Design and Analysis of Long-term Ecological Monitoring Studies (pp.3–22). New York, NY: Cambridge University Press.
- Gitzen, R.A., Millspaugh, J.J., Cooper, A.B., & Light, D.S. (2012). Design and Analysis of Long-term Ecological Monitoring Studies. New York, NY: Cambridge University Press.
- Groves, D.G., & Sharon, C. (2013). Planning tool to support planning the future of coastal Louisiana. Journal of Coastal Research, 67, 147–161.
- Gubhaju, B., & De Jong, G.F. (2009). Individual versus household migration decision rules: Gender and marital status differences in intentions to migrate in South Africa. International Migration, 47(1), 31–61.
- Guidry, K.M., & Pruitt, J.R. (2012). Damages to Louisiana Agriculture from Natural Disasters. Choices, 27(3).
- Habib, E., Nuttle, W.K., Rivera-Monroy, V.H., Gautam, S., Wang, J., Meselhe, E., & Twilley, R.R. (2007). Assessing Effects of Data Limitations on Salinity Forecasting in Barataria Basin, Louisiana, with a Bayesian Analysis. Journal of Coastal Research, 23, 749–763.
- Hale, J.A., Frazer, T.K., Tomasko, D.A., & Hall, M.O. (2004). Changes in the distribution of seagrass species along Florida's central Gulf Coast: Iverson and Bittaker revisited. Estuaries, 27(1), 36–43.
- Hershner, C., Havens, K., Bilkovic, D.M., & Wardrop, D. (2007). Assessment of Chesapeake Bay program selection and use of indicators. EcoHealth, 4(2), 187–193.
- Hijuelos, A.C. & Reed, D.J. (2017). 2017 Coastal Master Plan:
 Appendix F: Adaptive Management. Version Final. (pp. 1-43).
 Baton Rouge, Louisiana: Coastal Protection and Restoration Authority.

- Hijuelos, A.C., & Reed, D.J. (2013a). An approach to identifying environmental and socio-economic performance measures for coastal Louisiana. Baton Rouge, LA: The Water Institute of the Gulf. Funded by the Coastal Protection and Restoration Authority under Task Order 9 Contract No. 2503-12-58.
- Hijuelos, A.C., & Reed, D.J. (2013b). Methodology for Producing a Coastal Louisiana Report Card. Baton Rouge, LA: The Water Institute of the Gulf. Funded by the Coastal Protection and Restoration Authority under Task Order 9 Contract No.2503-12-58.
- Hijuelos, A.C., Yuill, B., & Reed, D.J. (2013). System-Wide Assessment and Monitoring Program (SWAMP) Framework (No. Prepared for and funded by the Coastal Protection and Restoration Authority (CPRA) under Task Order 6, Contract No.2503-12-58). Baton Rouge, LA: The Water Institute of the Gulf.
- Hu, S.S., Pierannunzi, C., & Balluz, L. (2011). The Impact of a Mixed-mode Data Collection Design on Response and Non-response Bias on a RDD Landline Telephone Survey. Presented at the 64th Annual Conference of the American Association for Public Opinion Research, Phoenix, AZ.
- Inoue, M., Park, D., Justic, D., & Wiseman Jr., W.J. (2008). A high-resolution integrated hydrology–hydrodynamic model of the Barataria Basin system. Environmental Modelling & Software, 23(9), 1122–1132.
- Interorganizational Committee on Principles and Guidelines for Social Impact Assessment. (2003). Principles and Guidelines for Social Impact Assessment in the USA. Impact Assessment and Project Appraisal, 21(3), 231–250.
- Jackson, J.E., Lee, R.G., & Sommers, P. (2004). Monitoring the Community Impacts of the Northwest Forest Plan: An Alternative to Social Indicators. Society & Natural Resources, 17(3), 223–233.
- Kaller, M.D., Kelso, W.E., Halloran, B.T., & Rutherford, D.A. (2011). Effects of spatial scale on assessment of dissolved oxygen dynamics in the Atchafalaya River Basin, Louisiana. Hydrobiologia, 658(1), 7–15.
- Karegar, M. A., Dixon, T. H. & Malservisi, R. (2015). A threedimensional surface
- velocity field for the Mississippi Delta: Implications for coastal restoration and
- flood potential. Geology 43, 519-522.
- Keim, R.F., Chambers, J.L., Hughes, M.S., Nyman, J.A., Miller, C.A., & Amos, J.B. (2006). Ecological consequences of changing hydrological conditions in wetland forests of coastal Louisiana. In Y.J.Xu & V.P.Singh (Eds.), Coastal Environment and Water Quality (pp.383–396). Highlands Ranch, CO: Water Resources Publications, LLC.
- Kemp, G., Wells, J., & van Heerden, I.L. (1980). Frontal passages affect delta development in Louisiana. Coastal Oceanography and Climatology News, 3, 4–5.

- Kemp, W.M., Sampou, P.A., Garber, J., Tuttle, J., & Boynton, W.R. (1992). Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series, 85, 137–152.
- Kincaid, T.M., & Olsen, A.R. (2013). spsurvey: Spatial Survey Design and Analysis (Version R package version 2.6).
- Kindinger, J.L., Buster, N.A., Flocks, J.G., Bernier, J.C., & Kulp, M.A. (2013). Louisiana Barrier Island Comprehensive Monitoring (BICM) Program Summary Report: Data and Analyses 2006 through 2010 (No. Open-File Report 2013–1083) (p.86). Reston, Virginia: USGS.
- Kirwan, M.L., Guntenspergen, G.R., D'Alpaos, A., Morris, J.T., Mudd, S.M., & Temmerman, S. (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37, 1-5.
- Kirwan, M.L., & Guntenspergen, G.R. (2012). Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology, 100, 764–770.
- Kitchin, R., & Tate, N. (2013). Conducting research in human geography: theory, methodology and practice. Routledge.
- Klemas, V. (2011). Remote Sensing Techniques for Studying Coastal Ecosystems: An Overview. Journal of Coastal Research, 27, 2–17.
- Kolker, A.S., Allison, M.A., & Hameed, S. (2011). An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophysical Research Letters, 38.
- Kracalik, I.T., Blackburn, J.K., Lukhnova, L., Pazilov, Y., Hugh-Jones, M.E., & Aikimbayev, A. (2012). Analysing the spatial patterns of livestock anthrax in Kazakhstan in relation to environmental factors: a comparison of local (Gi*) and morphology cluster statistics. Geospatial Health, 7(1), 111–126.
- Kusel, J. (1996). Well-being in forest-dependent communities, Part I: A New Approach (pp.361–373). University of California, Davis Centers for Water and Wildland Resources.
- Kusel, J. (2001). Assessing well-being in forest dependent communities. Journal of Sustainable Forestry, 13(1-2), 359–384.
- Lackey, L., & Stein, E. (2013). Evaluation of Design-Based Sampling Options for Monitoring Stream and Wetland Extent and Distribution in California. Wetlands, 33(4), 717–725.
- Lane, R.R., Day, J.W., Jr., Marx, B.D., Reyes, E., Hyfield, E., & Day, J.N. (2007). The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system. Estuarine, Coastal and Shelf Science, 74, 145–154.
- Larsen, D.P., Kaufmann, P.R., Kincaid, T.M., & Urquhart, N.S. (2004). Detecting persistent change in the habitat of salmon-bearing streams in the Pacific Northwest. Canadian Journal of Fisheries and Aquatic Sciences, 61(2), 283–291.

- Larsen, D.P., Kincaid, T.M., Jacobs, S.E., & Urquhart, N.S. (2001). Designs for Evaluating Local and Regional Scale Trends. BioScience, 51(12), 1069–1078.
- Larsen, D.P., Olsen, A.R., & Stevens, D.L. (2008). Using a Master Sample to Integrate Stream Monitoring Programs. Journal of Agricultural, Biological, and Environmental Statistics, 13(3), 243–254.
- Laska, S., Wooddell, G., Hagelman, R., Gramling, R., & Farris, M.T. (2005). At risk: the human, community and infrastructure resources of coastal Louisiana. Journal of Coastal Research, 90–111.
- Legg, C.J., & Nagy, L. (2006). Why most conservation monitoring is, but need not be, a waste of time. Journal of Environmental Management, 78(2), 194–199.
- Lester, G.D., Sorensen, S.G., Faulkner, P., Reid, C.S., & Maxit, I.E. (2005). Louisiana Comprehensive Wildlife Conservation Strategy, p. 455. Baton Rouge, LA: Louisiana Department of Wildlife and Fisheries.
- Levine, J.N., Esnard, A.-M., & Sapat, A. (2007). Population Displacement and Housing Dilemmas Due to Catastrophic Disasters. Journal of Planning Literature, 22(1), 3–15.
- Levin, P.S., Fogarty, M.J., Murawski, S.A., & Fluharty, D. (2009). Integrated Ecosystem Assessments: Developing the Scientific Basis for Ecosystem-Based Management of the Ocean. PLoS Biology, 7(1), 23–28.
- Li, C., White, J.R., Chen, C., Lin, H., Weeks, E., Galvan, K., & Bargu, S. (2011). Summertime tidal flushing of Barataria Bay: Transports of water and suspended sediments. Journal of Geophysical Research: Oceans, 116 (C4), C04009.
- Liu, J., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., Schneider, S. H., Ostrom, E., Pell, A. N., Lubchenco, J., Taylor, W. W., Ouyang, Z., Deadman, P., Kratz, T., & Provencher, W. (2007). Coupled human and natural systems. AMBIO: A Journal of the Human Environment, 36(8), 639–649.
- Livingston, R. (1988). Inadequacy of species-level designations for ecological studies of coastal migratory fishes. Environmental Biology of Fishes, 22(3), 225–234.
- Louisiana Department of Environmental Quality. (2008). Use Attainability Analysis of Barataria and Terrebonne Basins for Revision of Dissolved Oxygen Water Quality Criteria. Louisiana Department of Environmental Quality Water Quality Assessment Division.
- Louisiana Department of Wildlife and Fisheries. (2010). Trip Ticket Procedures Manual, p. 51. Baton Rouge, LA: Louisiana Department of Wildlife and Fisheries.
- Louisiana Department of Wildlife and Fisheries (LDWF). (2002). Marine Fisheries Division Field Procedure Manual (No.Ver.02-1). Baton Rouge, LA.
- Maantay, J., & Maroko, A. (2009). Mapping urban risk: Flood hazards, race, & Samp; environmental justice in New York. Applied Geography, 29(1), 111–124.

- Machlis, G.E., Force, J.E., & Burch, W.R. (1997). The human ecosystem Part I: The human ecosystem as an organizing concept in ecosystem management. Society & Natural Resources, 10(4), 347–367.
- Malone, E.L., & La Rovere, E.L. (2005). Assessing current and changing socio-economic conditions. Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures, 145.
- McDonald, T. (2012). Spatial sampling designs for long-term ecological monitoring. In R.A.Gitzen, J.J.Millspaugh, A.B.Cooper, & D.Licht (Eds.), Design and Analysis of Long-term Ecological Monitoring Studies. New York, NY: Cambridge University Press.
- McKee, K.L., Mendelssohn, I.A., & Materne, M.D. (2004). Acute Salt Marsh Dieback in the Mississippi River Deltaic Plain: A Drought- Induced Phenomenon? Global Ecology and Biogeography, 13, 65–73.
- McKee, K.L. (2011) Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science, 91, 475-483.
- Melancon, E., Soniat, T.M., Cheramie, V., Dugas, R.J., Barras, J., & Lagarde, M. (1998). Oyster resource zones of the Barataria and Terrebonne estuaries of Louisiana. Journal of Shellfish Research, 17(4-5), 1143–1148.
- Melwani, A.R., Greenfield, B.K., Jahn, A., Oram, J.J., Sedlak, M., & Davis, J. (2006). Power analysis and optimization of the RMP status and trends program, p. 76. Oakland, CA: San Francisco Estuary Institute.
- Meselhe, E.A., & Rodrigue, M.D. (2013). Models Performance Assessment Metrics and Uncertainity Analysis, p. 27. Baton Rouge, LA: Louisiana Coastal Area Program.
- Michener, W.K., Blood, E.R., Bildstein, K.L., Brinson, M.M., & Gardner, L.R. (1997). Climate Change, Hurricanes and Tropical Storms, and Rising Sea Level in Coastal Wetlands. Ecological Applications, 7(3), 770–801.
- Millennium Ecosystem Assessment. (2005a). Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC.
- Minello, T.J., Able, K.W., Weinstein, M.P., & Hays, C.G. (2003). Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis. Marine Ecology Progress Series, 246, 39–59.
- Minnesota Pollution Control Agency. (2006). A comprehensive wetland assessment, monitoring and mapping strategy for Minnesota, p. 54. Saint Paul, MN: Minnesota Comprehensive Wetland Assessment, Monitoring and Mapping Strategy Steering Committee.
- Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., & Cahoon, D.R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869–2877.

- Mueller, R., & Harris, M. (2013). Reported Uses of CropScape and the National Cropland Data Layer Program. Presented at the Sixth International Conference on Agricultural Statistics, Rio de Janeiro, Brazil.
- Myint, S. W., & Walker, N. D. (2002). Quantification of surface suspended sediments along a river dominated coast with NOAA AVHRR and SeaWiFS measurements: Louisiana, USA. International Journal of Remote Sensing, 23(16), 3229–3249.
- Neubauer, S.C. (2008). Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science, 78, 78–88.
- Nicholson, M.D., & Jennings, S. (2004). Testing candidate indicators to support ecosystem-based management: the power of monitoring surveys to detect temporal trends in fish community metrics. ICES Journal of Marine Science, 61(1), 35–42.
- Nixon, S.W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41, 199–219.
- Northern Gulf Institute Ecosystem Team. (2010). Integrated Ecosystem Assessment Initiative for Selected Systems in the Northern Gulf of Mexico (p.61). Stennis Space Center, Mississippi: Northern Gulf Institute, Mississippi State University.
- Nyman, J.A., Walters, R.J., Delaune, R.D., & Patrick Jr, W.H. (2006). Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science, 69, 370–380.
- Odum, W.E. (1988). Comparative Ecology of Tidal Freshwater and Salt Marshes. Annual Review of Ecology and Systematics, 19, 147–176.
- Ord, J.K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27(4), 286–306.
- Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10(5), 381–402.
- Oyster Technical Task Force. (2012). The oyster fishery of the Gulf of Mexico, United States: A fisheries management plan. (S.J.Vanderkooy, Ed.). Ocean Springs, MS: Gulf States Marine Fisheries Commission.
- Parisi, D., Taquino, M., Michael Grice, S., & Gill, D.A. (2003). Promoting Environmental Democracy Using GIS as a Means to Integrate Community into the EPA-BASINS Approach. Society & Natural Resources, 16(3), 205–219.
- Pellerin, B.A., Bergamaschi, B.A., Downing, B.D., Saraceno, J.F., Garrett, J.A., & Olsen, L.D. (2013). Optical Techniques for the Determination of Nitrate in Environmental Waters: Guidelines for Instrument Selection, Operation, Deployment, Maintenance, Quality Assurance, and Data Reporting (p.37).

- Pennings, S.C., Grant, M.B., & Bertness, M.D. (2005). Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology, 93(1), 159–167.
- Perles, S.J., Wagner, T., Irwin, B.J., Manning, D.R., Callahan, K.K., & Marshall, M.R. (2014). Evaluation of a Regional Monitoring Program's Statistical Power to Detect Temporal Trends in Forest Health Indicators. Environmental Management, 54(3), 641–655.
- Peyronnin, N., Green, M., Richards, C.P., Owens, A., Reed, D., Chamberlain, J., Groves, D.G., Rhinehart, W.K., & Belhadjali, K. (2013). Louisiana's 2012 coastal master plan: overview of a science-based and publicly informed decision-making process. Journal of Coastal Research, 67 (sp1), 1–15.
- Pezeshki, S.R. (2001). Wetland plant responses to soil flooding. Environmental and Experimental Botany, 46(3), 299–312.
- Philippi, T. (2005). CERP MAP Implementation: Transect and Sentinel Site Sampling Design (No.SFWMD Agreement CP040131) (p.66). Miami, FL: Florida International University.
- Phillips, R. (2003). Community indicators. Chicago, IL: American Planning Association.
- Piazza, B.P., & La Peyre, M.K. (2011). Nekton community response to a large-scale Mississippi River discharge: Examining spatial and temporal response to river management. Estuarine, Coastal and Shelf Science, 91(3), 379–387.
- Piazza, S.C., Steyer, G.D., Cretini, K.F., Sasser, C.E., Visser, J.M., Holm, G.O., Sharp, L.A., Evers, D.E., & Meriwether, J.R. (2011). Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities (Open-File Report No.2011- 1094) (p.126). Reston, Virginia: U.S. Geological Survey.
- Rabalais, N.N., & Turner, R.E. (2001). Hypoxia in the Northern Gulf of Mexico: description, causes and change. In N.N. Rabalais & R.E.Turner (Eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems, pp.1–36. Washington, D.C.: Coastal and Estuarine Studies No.58, American Geophysical Union.
- Rakocinski, C.F., Baltz, D.M., & Fleeger, J.W. (1992). Correspondence between environmental gradients and the community structure of marsh-edge fishes in a Louisiana estuary. MARINE ECOLOGY PROGRESS SERIES, 80, 135–148.
- Reddy, K.R., D'Angelo, E.M., & Harris, W.G. (2000). Biogeochemistry of Wetlands. In M.E. Sumner, Handbook of Soil Science, pp. G89–119. Boca Raton, FL: CRC Press.
- Reynolds, J.H. (2012). An overview of statistical considerations in long-term monitoring. In R.A. Gitzen, J.J. Millspaugh, A.B. Cooper, & D. Licht (Eds.), Design and Analysis of Long-term Ecological Monitoring Studies. New York, NY: Cambridge University Press.

- Rozas, L.P., & Minello, T.J. (1997). Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: A review of sampling design with focus on gear selection. Estuaries, 20(1), 199–213.
- Rozas, L.P., & Minello, T.J. (2011). Variation in penaeid shrimp growth rates along an estuarine salinity gradient: Implications for managing river diversions. Journal of Experimental Marine Biology and Ecology, 397, 196 207.
- Rozas, L.P., Minello, T.J., Munuera-Fernández, I., Fry, B., & Wissel, B. (2005). Macrofaunal distributions and habitat change following winter-spring releases of freshwater into the Breton Sound estuary, Louisiana (USA). Estuarine, Coastal and Shelf Science, 65, 319–336.
- Ruehlmann, J., & Körschens, M. (2009). Calculating the Effect of Soil Organic Matter Concentration on Soil Bulk Density. Soil Science Society of America Journal, 73(3), 876.
- Samhouri, J.F., Haupt, A.J., Levin, P.S., Link, J.S., & Shuford, R. (2013). Lessons learned from developing integrated ecosystem assessments to inform marine ecosystem-based management in the USA. ICES Journal of Marine Science, 71(5), 1205–1215.
- Sasser, C.E., Visser, J.M., Mouton, Edmond, Linscombe, Jeb, & Hartley, S.B., (2014). Vegetation types in coastal Louisiana in 2013: U.S. Geological Survey Scientific Investigations Map 3290, 1 sheet, scale 1:550,000, https://dx.doi.org/10.3133/ sim3290.
- Schreiber, E.S.G., Bearlin, A.R., Nicol, S.J., & Todd, C.R. (2004). Adaptive management: a synthesis of current understanding and effective application. Ecological Management & Restoration, 5, 177–182.
- Scott, L.M., & Janikas, M.V. (2010). Spatial statistics in ArcGIS. In Handbook of Applied Spatial Analysis (pp.27–41). Springer.
- Sklar, F.H., & Browder, J.A. (1998). Coastal Environmental Impacts Brought About by Alterations to Freshwater Flow in the Gulf of Mexico. Environmental Management, 22(4), 547–562.
- Snedden, G.A., & Swenson, E.M. (2012). Hydrologic index development and application to selected Coastwide Reference Monitoring System sites and Coastal Wetlands Planning, Protection and Restoration Act projects (No. Open-File Report 2012–1122) (p.25). U.S. Geological Survey.
- Snedden, Gregg A. (2019). Patterning emergent marsh vegetation assemblages in coastal Louisiana, USA, with unsupervised artificial neural networks. Applied Vegetation Science, https://doi.org/10.1111/avsc.12425.
- Sommers, P. (2001). Monitoring Socioeconomic Trends in the Northern Spotted Owl Region: Framework, Trends Update, and Community Level Monitoring Recommendations, p. 49. Seattle, WA: USGS Forest and Rangeland Ecosystem Science Center.

- Stagg, C.L., Sharp, L.A., McGinnis, T., & Snedden, G.A. (2013). Submergence vulnerability index development and application to Coastwide Reference Monitoring System sites and Coastal Wetlands Planning, Protection and Restoration Act projects (No.Open-File Report 2013–1163) (p. 12). U.S. Geological Survey.
- Stagg, C.L., Krauss, K.W., Cahoon, D.R., Cormier, N., Conner, W.H., & Swarzenski, C.M. (2016). Processes contributing to resilience of coastal wetlands to sea-level rise. Ecosystems, 19 (8), 1445-1449.
- Starsinic, M., & Tersine, A. (2007). Analysis of variance estimates from American Community Survey multiyear estimates. In Proceedings of the 2007 Joint Statistical Meetings on CD-ROM (pp.3011–3017).
- Stevens, D.L., & Olsen, A.R. (2004). Spatially balanced sampling of natural resources. Journal of the American Statistical Association, 99(465), 262–278.
- Steyer, G.D., Owens, A.B., & Couvillion, B.R. (2004). Data
 Collection Network to Support Ecosystem Forecasting for the Barataria Basin Mississippi River Domain. In Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) Model of Louisiana Coastal Area (LCA) Comprehensive Ecosystem Restoration Plan. Volume I: Tasks 1-8 (pp.204–315). Baton Rouge, LA.
- Steyer, G.D., Sasser, C.E., Visser, J.M., Swenson, E.M., Nyman, J.A., & Raynie, R.C. (2003a). A proposed coast-wide reference monitoring system for evaluating wetland restoration trajectories in Louisiana. Environmental Monitoring and Assessment, 81(1-3), 107–117.
- Steyer, G.D., Sasser, C.E., Visser, J.M., Swenson, E.M., Nyman, J.A., & Raynie, R.C. (2003b). A proposed coast-wide reference monitoring system for evaluating wetland restoration trajectories in Louisiana. Environmental Monitoring and Assessment, 81(1-3), 107–117.
- Swenson, E.M., & Swarzenski, C.M. (2004). Open Water Monitoring to support coastal restoration, Chapter 16.In R.R. Twilley (Ed.), Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) Model of Louisiana Coastal Area (LCA) Comprehensive Ecosystem Restoration Plan. Volume II: Tasks 9-15 (p.355). Baton Rouge, LA: Final Report to Department of Natural Resources, Coastal Restoration Division. Contract No. 2511-02- 24.
- Sylvan, J.B., Dortch, Q., Nelson, D.M., Maier Brown, A.F., Morrison, W., & Ammerman, J.W. (2006). Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environmental Science & Technology, 40, 7548–7553.
- Taquino, M., Parisi, D., & Gill, D.A. (2002). Units of analysis and the environmental justice hypothesis: the case of industrial hog farms. Social Science Quarterly, 83(1), 298–316.
- The Water Institute of the Gulf. (2013). Adaptive Management Framework for Coastal Louisiana (No. Produced for and funded by the Coastal Protection and Restoration Authority under Task Order 9, Contract No.2503-12-58) (p.28). Baton Rouge, LA: The Water Institute of the Gulf.

- Tonelli, M., Fagherazzi, S., & Petti, M. (2010). Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research, 115(C9).
- Trosclair, K.J. (2013). Wave transformation at a saltmarsh edge and resulting marsh edge erosion: Observations and modeling. University of New Orleans, New Orleans, LA.
- Turner, R.E., Qureshi, N., Rabalais, N.N., Dortch, Q., Justic, D., Shaw, R.F., & Cope, J.(1998). Fluctuating silicate: nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences, 95(22), 13048–13051.
- Turner, R.E., & Rabalais, N.N. (1991). Changes in Mississippi River water quality this century. BioScience, 41(3), 140–147.
- Turner, R.E., Swenson, E.M., & Milan, C.S. (2002).Organic and Inorganic Contributions to Vertical Accretion in Salt Marsh Sediments. In M.P. Weinstein & D.A. Kreeger (Eds.), Concepts and Controversies in Tidal Marsh Ecology, pp. 583–595. Springer Netherlands.
- Urquhart, N.S. (2012). The role of monitoring design in detecting trend in long-term ecological monitoring studies. In R.A. Gitzen, J.J. Millspaugh, A.B. Cooper, & D. Licht (Eds.), Design and Analysis of Long-term Ecological Monitoring Studies, pp. 151–173. New York, NY: Cambridge University Press.
- Urquhart, N.S., & Kincaid, T.M. (1999). Designs for Detecting Trend from Repeated Surveys of Ecological Resources. Journal of Agricultural, Biological, and Environmental Statistics, 4(4), 404–414.
- Urquhart, N.S., Paulsen, S.G., & Larsen, D.P. (1998). Monitoring for Policy-Relevant Regional Trends over Time. Ecological Applications, 8(2), 246.
- U.S. Army Corps of Engineers. (2004). Louisiana Coastal Area (LCA) Ecosystem Restoration Study, p. 506. New Orleans, LA: U.S. Army Corps of Engineers Mississippi Valley New Orleans District.
- USEPA. (2001). Nutrient criteria technical guidance: estuarine and coastal marine waters (No. EPA- 822-B-01-003). Washington, D.C.: USEPA Office of Water.
- USEPA. (2009). National Coastal Condition Assessment: Field Operations Manual (No. EPA- 841-R-09-003) (p.133). Washington D.C.: U.S. Environmental Protection Agency.
- Valiela, I. (1995). Marine Ecological Processes (Second Edition). New York: Springer Science & Business Media.
- Virginia Commonwealth University. (2014). Survey Guidebook: A Guide for Effectively Administering Surveys on Campus. Richmond, VA: Assessment and Institutional Effectiveness in the Office of Planning and Decision Support, Virginia Commonwealth University.
- Visser, J.M., Sasser, C.E., Chabreck, R.H., & Linscombe, R.G. (1998). Marsh vegetation types of the Mississippi River deltaic plain. Estuaries, 21(4), 818–828.

- Visser, P.S., Krosnick, J., & Lavrakas, P.J. (2000). Survey Research. In H.T. Reis & C.M. Judd (Eds.), Handbook of Research Methods in Social and Personality Psychology. New York, NY: Cambridge University Press.
- Wagner, T., Irwin, B.J., Bence, J.R., & Hayes, D.B. (2013).
 Detecting Temporal Trends in Freshwater Fisheries Surveys:
 Statistical Power and the Important Linkages between
 Management Questions and Monitoring Objectives. Fisheries,
 38(7), 309–319.
- Walker, N. D., & Rabalais, N. N. (2006). Relationships among satellite chlorophylla, river inputs, and hypoxia on the Louisiana Continental shelf, Gulf of Mexico. Estuaries and Coasts, 29(6), 1081–1093.
- Walker, N. D., Wiseman, W. J., Rouse, L. J., & Babin, A. (2005). Effects of River Discharge, Wind Stress, and Slope Eddies on Circulation and the Satellite-Observed Structure of the Mississippi River Plume. Journal of Coastal Research, 216, 1228–1244.
- Wang, F. (2006). Quantitative Methods and Applications in GIS. Boca Raton, FL: CRC Press.
- Wang, F., & Xu, Y. J. (2009). Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale. Environmental Monitoring and Assessment, 156(1-4), 491–507.
- Watzke, D.A. (2004). Short-term evolution of a marsh island system and the importance of cold front forcing, Terrebone Bay, Louisiana (Master of Science in The Department of Oceanography and Coastal Sciences). Louisiana State University, Baton Rouge, LA.
- Webb, E.C., & Mendelssohn, I.A. (1996). Factors affecting vegetation dieback of an oligohaline marsh in coastal Louisiana: field manipulation of salinity and submergence. American Journal of Botany, 83(11), 1429–1434.

- Williams, B.K., Szaro, R.C., & Shapiro, C.D. (2009). Adaptive Management: The U.S. Department of the Interior Technical Guide (Adaptive Management Working Group). Washington, DC: Adaptive Management Working Group. U.S. Department of the Interior.
- Williamson, C. (2008). Planners and the census: Census 2010, ACS, Factfinder, and understanding growth. Chicago, IL: American Planning Association.
- Wilson, C.A., & Allison, M.A. (2008). An equilibrium profile model for retreating marsh shorelines in southeast Louisiana. Estuarine, Coastal and Shelf Science, 80(4), 483–494.
- Winter, T.C. (2000). The vulnerability of wetlands to climate change: a hydrologic landscape perspective. Journal of the American Water Resources Association, 36(2), 305–312.
- Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23
- Yuill, B., Lavoie, D., & Reed, D.J. (2009). Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research, 54, 23–36.
- Zar, J.H.(2010). Biostatistical Analysis (5th ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall.
- Zhang, Y., Pinder, G.F., & Herrera, G.S. (2005). Least cost design of groundwater quality monitoring networks. Water Resources Research, 41(8), W08412.
- Zimmerman, R.J., Minello, T.J., & Rozas, L.P. (2000). Salt marsh linkages to productivity of penaeid shrimps and blue crabs in the northern Gulf of Mexico. In M.P. Weinstein & D.A. Kreeger (Eds.), Concepts and Controversies in Tidal Marsh Ecology, pp. 293–314. Dordrecht, The Netherlands: Kluwer Academic Publishers.

APPENDIX I INFLUENCE DIAGRAMS

OVERVIEW

As part of an earlier effort for identifying the key parameters required to understand system change, an influence diagram approach was employed to illustrate how the main drivers of system change influence specific system characteristics. The diagrams were designed to illustrate general relationships between drivers and system responses and were not intended to serve as comprehensive conceptual models. This approach did function as a guide for identifying important key parameters (e.g., those that reflect a number of system change mechanisms) and understanding in a holistic sense the potential impacts on system dynamics from a variety of drivers. Influence diagrams were developed separately for the restoration and protection monitoring frameworks, although common drivers exist between the two. A full description of the influence diagrams can be found in Hijuelos et al. (2013). This appendix contains a subset of the full diagram to illustrate the parameters (i.e., variables) selected for SWAMP. Given the large size of the diagrams, some are depicted as two separate diagrams to separately show the "inputs" and "outputs" of the variables.

Figure 92. Weather and climate variables (in yellow) selected from the SWAMP Framework influence diagram. What are the drivers that (Hijuelos et al., 2013) cause change to the coastal environment? System Processes Atmospheric & Oceanic Processes Storm Events Non-Tropical Regional/ Global Climate Tropical Storms Local Climate Storms Wind Speed and Atmospheric Solar Radiation Precipitation Air Temperature Carbon Dioxide Direction Expansion of subtropical / Barrier Island Forested Non-Forested Non-Wetland Wetland Primary Estuarine Water Vegetated/ Unvegetated Habitats Wetland Evapotranspiration wetland Area Productivity Quality Fragmentation tropical species Fragmentation Surface Water Groundwater Dissolved Estuarine Water Wetland Area Temperature Oxygen Quantity Quantity Pelagic Primary Production Estuarine Water Elevation Wave Height,

Period, Direction

Figure 93. Biotic integrity variables related to wetlands (in yellow) selected from the SWAMP Framework What are the drivers that cause change to the coastal influence diagram showing drivers or variables that **Human Activities** System Processes influence wetlands. environment? (Hijuelos et al., 2013) Ecosystem Groundwater Inputs Utilization Agriculture Crops and Urbanization Surface Water Inputs Impoundments Livestock Atmospheric & Groundwater Surface Water Industry Restoration Quality Quantity Oceanic Processes Ridge Hydrologic Regional/ Global Climate Marsh Oyster Barrier Riverine Bank Tropical Non-Tropical Local Petrochemical Stabilization Water Quality Climate Restoration Storms Creation Restoration Storms Wind Speed Atmospheric Carbon Riverine Water Solar Air Ocean Oil Spills Tidal Regime/Exchange Diversions Exotics Dissolved Load and Direction Radiation Temperature Temperature Dioxide Expansion of subtropical/ Estuarine Water Surficial Erosion Nutrients (River) Estuarine Water Quality Elevation tropical species Submerged Aquatic Vegetation Inundation Soil Nutrients (Estuarine) Characteristics Wetland Vegetative Wetland Primary Organic Matter & **Bulk Density** Mineral Content Productivity Types Surficial Accretion Subsidence Surface (see figure below for output)

Elevation

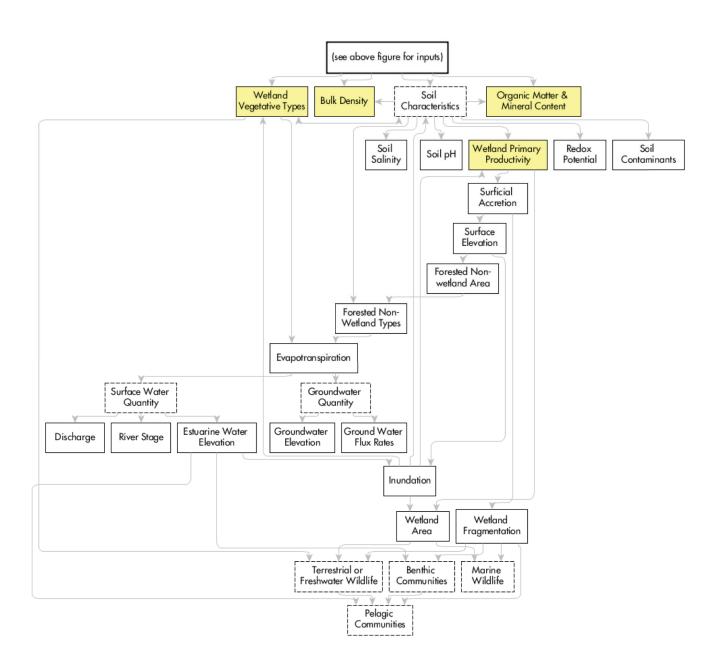
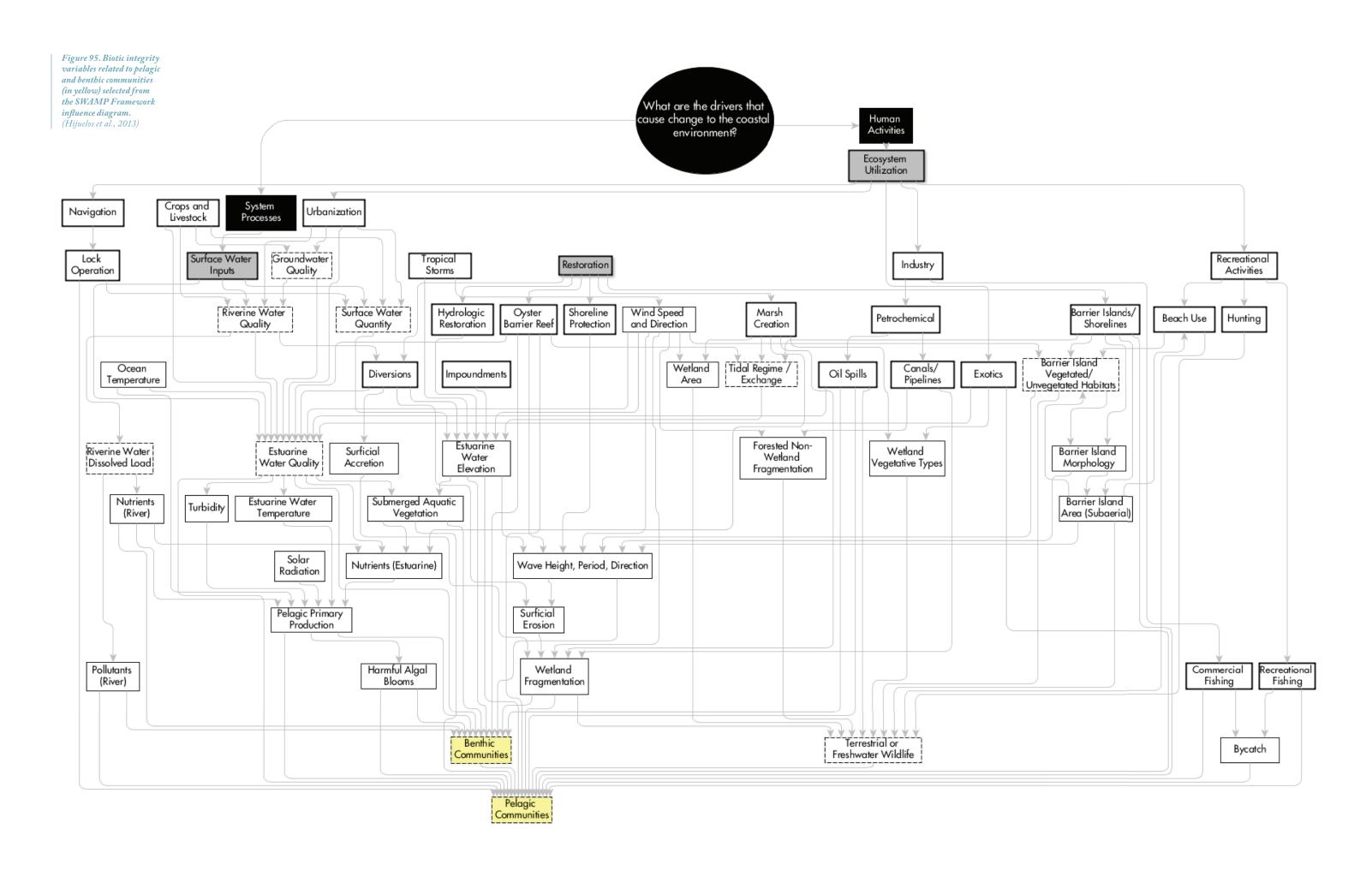



Figure 94. Biotic integrity variables related to wetlands (in yellow) selected from the SWAMP Framework influence diagram showing wetlands influence on other variables. (Hijuelos et al., 2013)

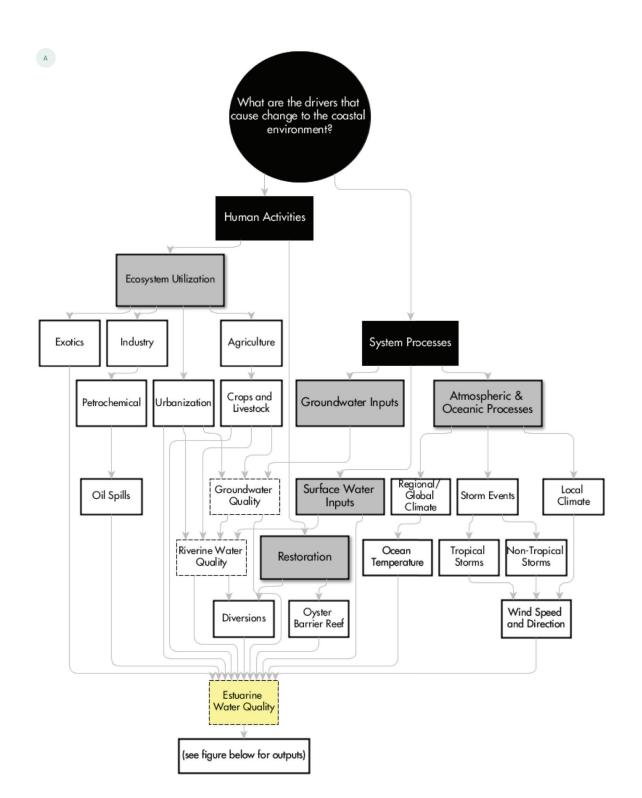


Figure 96. Water quality variables (in yellow) selected from the SWAMP Framework influence diagram showing (A) drivers or variables that influence water quality and (B) water quality influence on other variables.
(Hijuelos et al., 2013)

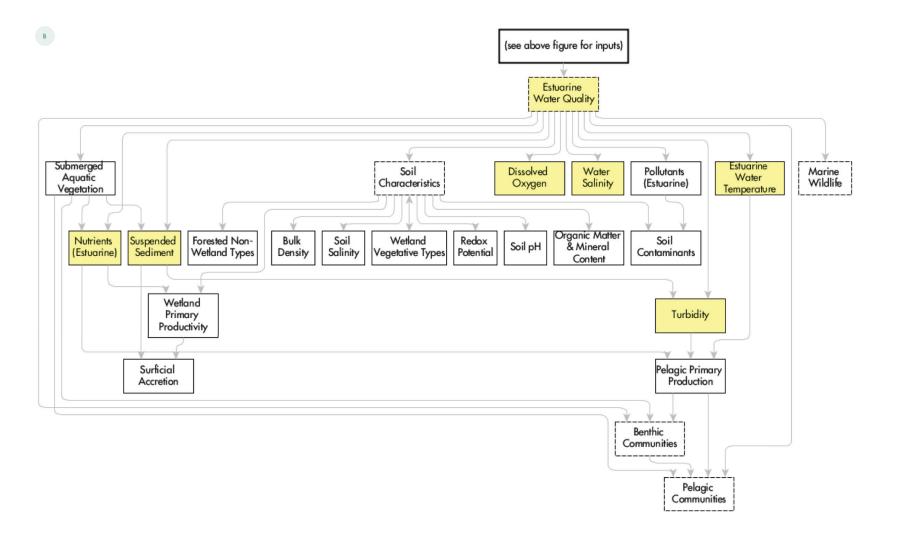
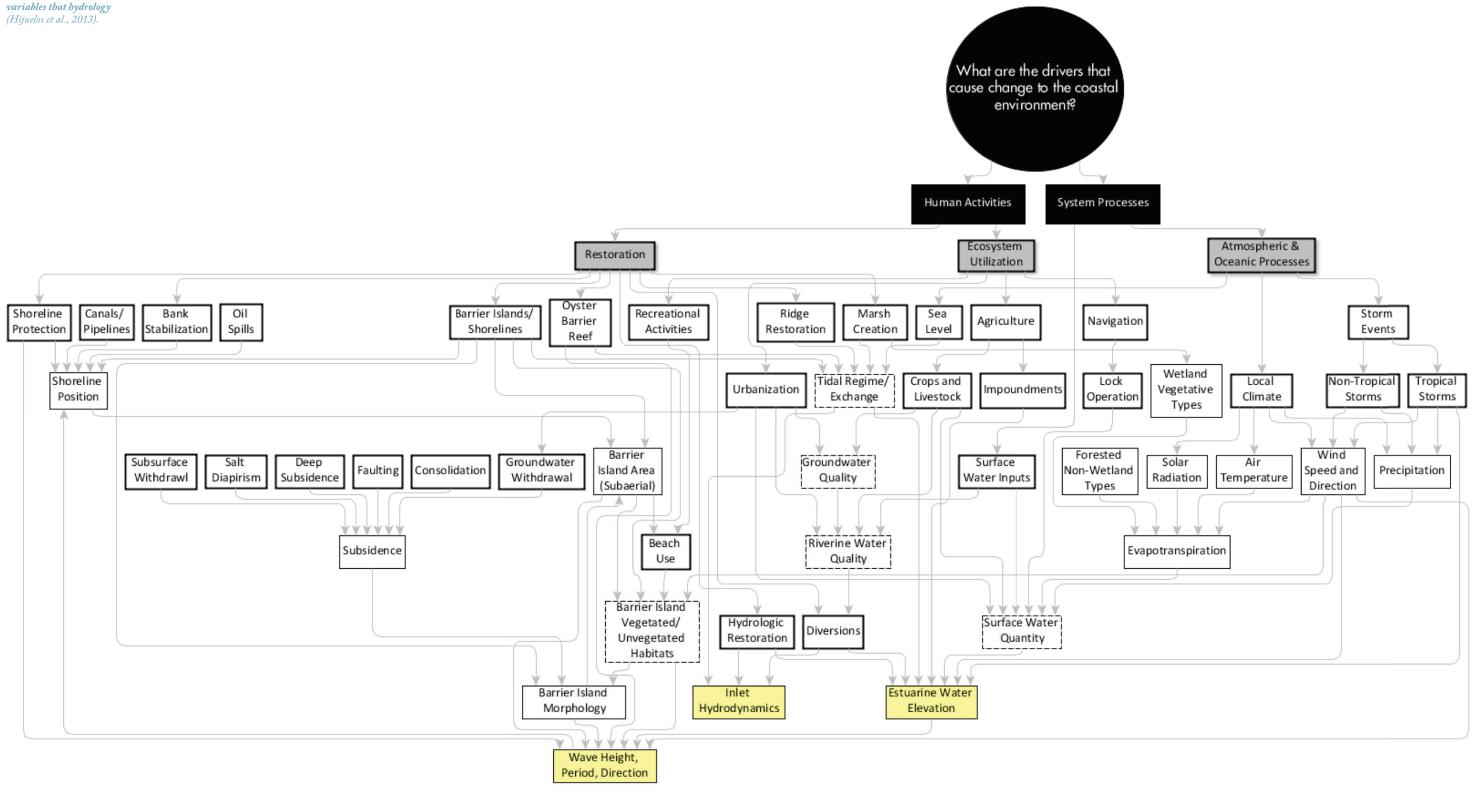



Figure 97. Hydrology variables (in yellow) selected from the SWAMP Framework influence diagram showing drivers or variables that hydrology (Hijuelos et al., 2013).

APPENDIX II ANALYTICAL RESULTS

WATER QUALITY

Power analyses were conducted on water quality variables at the coastwide, basinwide, and subbasin scales, depending on data availability. The purpose of the power analysis was to identify an appropriate sample size for detecting changes at different spatial and temporal scales. A more rigorous analysis was conducted on the basin and subbasin scales given the initial priority for implementing SWAMP within the Barataria Basin. A more generalized analysis and interpretation of results was performed on the coastwide scale in order to approximate how the sampling design for the basins would scale coastwide. As a result, the LDEQ AWQ program datasets were used on the coastwide analysis, whereas a compilation of datasets from the Davis Pond monitoring program, USGS, LDEQ, and individual research studies were used in order to conduct a more rigorous analysis for Barataria and Pontchartrain Regions.

Chlorophyll a

CALCASIEU-SABINE BASIN POWER ANALYSIS

At the time of this report, there were no active or historical chlorophyll a measurements (continuous or discrete) in the estuarine open water bodies within Calcasieu-Sabine Basin. As a result, no power analyses were conducted for this basin. Results of the power analyses for the other water quality variables will be used to inform the overall water quality monitoring design.

MERMENTAU BASIN POWER ANALYSIS

At the time of this report, there were no active or historical chlorophyll a measurements (continuous or discrete) in the estuarine open water bodies within Mermentau Basin. As a result, no power analyses were conducted for this basin. Results of the power analyses for the other water quality variables will be used to inform the overall water quality monitoring design.

TECHE-VERMILION BASIN POWER ANALYSIS

Chlorophyll a concentrations were obtained from an unpublished research study conducted by Dr. Beth Stauffer and her students at University of Louisiana at Lafayette in the Teche-Vermilion Basin (Figure 98) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). For the Stauffer et al. (unpublished data) study, water samples were obtained on a monthly basis throughout Teche-Vermilion Basin

at nine sites (co-located with LDEQ sites) in 2017. It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The natural logarithmic transformation was used in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the log-transformed chlorophyll a concentrations with the term season. This term was used to reduce the residual mean square error and to provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

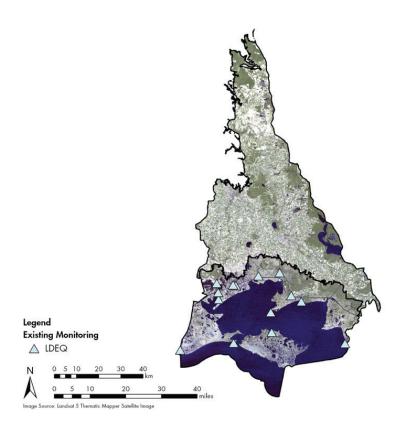


Figure 98. Teche-Vermilion Basin chlorophyll a site locations from Stauffer et al. (unpublished data) monitoring study.

TECHE-VERMILION BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with a moderate sample size of 47 sites. Detecting a linear pattern in the annual means over time, averaged over all factors, can be achieved with a sample size of 2 (Figure 99, Table 23). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 23. Teche-Vermilion Chlorophyll a power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (μg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	3.03	47
2: +1 years of data	16%	8.98	2
3: +3 years of data	6%	2.91	2
4: +5 years of data	6%	2.91	2

i Detecting differences within seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

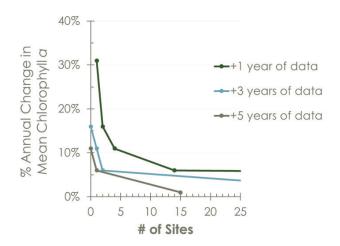


Figure 99. Teche-Vermilion Basin chlorophyll a power analysis results for hypotheses 1 through 4.

Results indicate the percent change in mean chlorophyll a that can be detected given a range of sample sizes with $\alpha=0.05$, $\beta\geq0.80$, $\sigma=0.55$. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on log-transformed values.

ii The average change was calculated as the average difference among means for seasons from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

ATCHAFALAYA BASIN POWER ANALYSIS

At the time of this report, there were no active or historical chlorophyll a measurements (continuous or discrete) in the estuarine open water bodies within Atchafalaya Basin. As a result, no power analyses were conducted for this basin. Results of the power analyses for the other water quality variables will be used to inform the overall water quality monitoring design.

TERREBONNE BASIN POWER ANALYSIS

At the time of this report, there were no active or historical chlorophyll a measurements (continuous or discrete) in the estuarine open water bodies within Terrebonne Basin. As a result, no power analyses were conducted for this basin. Results of the power analyses for the other water quality variables will be used to inform the overall water quality monitoring design.

BARATARIA BASIN POWER ANALYSIS

At the time of this report, there were no active chlorophyll a measurements (continuous or discrete) in the estuarine open water bodies within Barataria Basin or coastwide. As a result, historical data collected within Barataria Basin were used in the analysis.

Chlorophyll a concentrations were obtained from the historical U.S. Army Corps of Engineers (USACE) Davis Pond monitoring program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). As part of the monitoring program, water samples were obtained on a monthly basis throughout the Barataria Basin from 1998-2009

(Figure 100). It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The NHD was then used to classify the monitoring site locations into waterbody types. The NHD contains geographic information on the drainage network and classifies features such as rivers, streams, canals, lakes, ponds, coastline, dams, and stream gauges. The features were consolidated such that sites were classified as either open water (e.g., lakes, ponds) or channels (e.g., streams, canals). The sites were further classified based on their position in the estuary (upper, middle, and lower subbasins as indicated in Figure 100) and the season in which they were collected. The natural logarithmic transformation was used in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the log-transformed chlorophyll a concentrations with the interaction term season*waterbody type*subbasin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

- 1. at least one subbasin mean differs significantly from another subbasin mean;
- 2. at least one seasonal mean differs significantly from another seasonal mean;
- 3. water body type means are significantly different from one another;
- 4. the means in year 0 differ significantly from the means in year 1, averaged over all water body types, seasons, and subbasins;

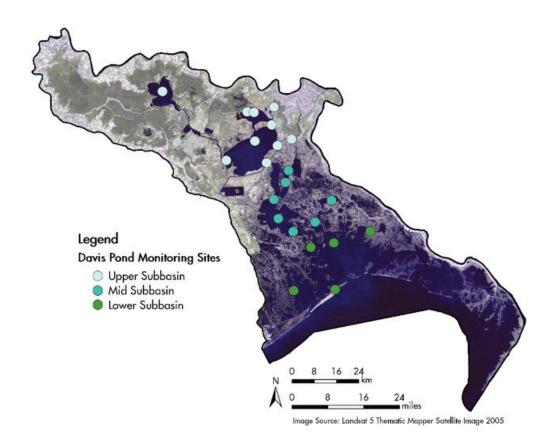


Figure 100. Chlorophyll a site locations for the historical USACE Davis Pond Monitoring Program.

Sites were classified into subbasins using the USACE categorization.

- the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all water body types, seasons, and subbasins;
- 6. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all water body types, seasons, and subbasins.

Hypotheses 4 through 6 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Further, hypotheses 2 through 6 were conducted for each subbasin independently in order to evaluate how sample size requirements may differ at a subbasin scale relative to the basin scale. Although standard deviation may differ when calculated at the basin versus subbasin scale, the basin scale estimate of standard deviation was used in the subbasin analysis. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses. As a result, the only information not held constant between the basin

and subbasin scale analyses was the estimated means for each of the factors (season, waterbody type, subbasin). This allowed for exploring the sensitivity of the analysis to the means calculated at the different spatial scales.

BARATARIA BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with a moderate sample size (6-12 sites), while detecting changes between subbasins means or between water body types means requires a substantial increase in sample size (Table 24). Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 101). However, a threshold point is evident in Figure 101, where an increase in sample size beyond nine results in a very small shift in the percentage of change. For example, from a sample size of one to nine, the difference in the y-axis is approximately 20%, while a change from nine to 18 only results in a change of 5%. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 24. Barataria Basin Chlorophyll a power analysis summary results for hypotheses 1 through 6.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (μg L-1)ii	# OF SITES
1: Differences among subbasin means	n/a	0.93	80
2: Differences among seasonal means	n/a	3.10	10
3: Differences among water body type means	n/a	0.14	> 1000
4: +1 years of data	20% - 15%	4.16 – 2.95	6-11
5: +3 years of data	8% - 6%	1.26-0.92	6-11
6: +5 years of data	~6%	0.92	6-11

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for seasons from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

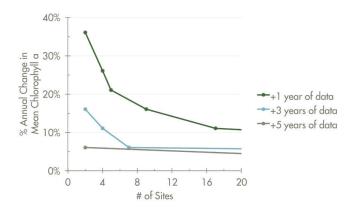


Figure 101. Barataria Basin Chlorophyll a power analysis summary results for hypothesis 4 through 6.

Results indicate the percent change in mean chlorophyll a that can be detected given a range of sample sizes with α =0.05, β ≥0.80, α =0.42. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on square-root-transformed values.

SUBBASIN

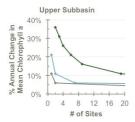
The results of the power analysis on the subbasin scale within Barataria Basin exhibit comparable sample size requirements for each hypothesis for an individual subbasin as they do for the basin as a whole (Table 25 and Figure 102). The reason for the consistency in the estimates stems from the similarities in the means among subbasins such that the basinwide mean is representative of the mean calculated on a subbasin scale. As a result, if subbasin scale questions are of interest, the total sample size for the basin would be approximately three times larger than if the question of interest is on a basinwide scale.

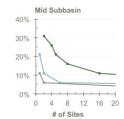
Table 25. Barataria Basin subbasin Chlorophyll a summary power analysis results for hypotheses 2 through 6.

Z
_
S
⋖
8
Θ
\supset
S
~
ш
Δ.
Δ.
\supset

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (μg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	2.30	14
3: Differences among water body type means	n/a	0.38	658
4: +1 years of data	20-15%	3.56-2.53	11-7
5: +3 years of data	7-6%	1.10-0.92	11-7
6: +5 years of data	6-5%	0.92-0.76	11-7

MID-SUBBASIN


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (µg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	3.78	8
3: Differences among water body type means	n/a	0.26	> 1000
4: +1 years of data	20-15%	4.70-3.33	10-6
5: +3 years of data	6%	1.20	10-6
6: +5 years of data	6-5%	1.20-0.99	10-6


LOWER SUBBASIN

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (μg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	4.55	5
3: Differences among water body type meansiii	n/a	n/a	n/a
4: +1 years of data	20-15%	4.43-3.14	10-6
5: +3 years of data	6%	1.14	10-6
6: +5 years of data	6-5%	1.14-0.94	10-6

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

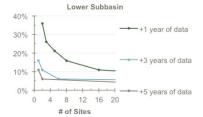


Figure 102. Barataria Basin subbasin chlorophyll a power analysis summary results for hypotheses 4 through 6.

Results indicate the percent change in mean chlorophyll a that can be detected given a range of sample sizes with $\alpha=0.05$, $\beta\geq0.80$, $\sigma=0.816$. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline).

PONTCHARTRAIN REGION POWER ANALYSIS

Chlorophyll a concentrations were obtained from a research study conducted by Lundberg et al. (2014) in Breton Basin (Figure 103) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). No other data sources were available for conducting the analysis in the remaining portions of the Pontchartrain Region. For the Lundberg et al. (2014) study, water samples were obtained on a monthly basis throughout Breton Basin from 2007-2011. It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The natural logarithmic transformation was used in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the logtransformed chlorophyll a concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. An increase in standard deviation, an increase in power, or a decrease in significance level (alpha: α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were held constant across analyses.

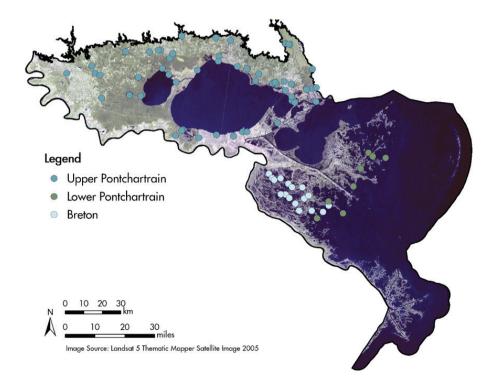


Figure 103. Pontchartrain Region water quality and chlorophyll a collection sites.

Site locations consist of sites from the LDEQ Ambient Water Quality monitoring program (upper and lower Pontchartrain) and Lundberg et al. 2014 (Breton). Only Lundberg et al. (2014) sites were used in the analysis of chlorophyll a. LDEQ sites were used in the analysis of other water quality variables, as described in later sections.

PONTCHARTRAIN REGION RESULTS

The results of the power analysis in Breton Basin indicated that detecting differences in seasonal means within a year requires a sample size of 41 (Table 26), which is four times higher than results from the Barataria analysis. This is because the variability among seasons is higher in Breton Basin than Barataria Basin while the absolute differences among means are smaller. Thus, detecting smaller differences with higher variability requires larger sample sizes. Conversely, the results indicate that for detecting a linear pattern in the annual means over time, averaged over all seasons, can be achieved with a sample size of 6 (Figure 104). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 26. Breton Basin chlorophyll a power analysis results for hypotheses 1 through 6.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (μg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	2.41	41
2: +1 years of data	20%	7.09	6
3: +3 years of data	6%	1.78	6
4: +5 years of data	6%	1.78	6

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

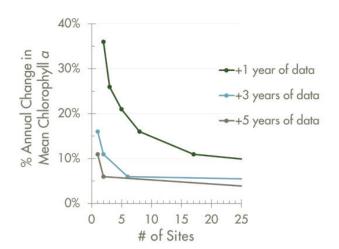


Figure 104. Brenton Basin chlorophyll a power analysis results for hypotheses 4 through 6.

Results indicate the percent change in mean chlorophyll a that can be detected given a range of sample sizes with $\alpha=0.05$, $\beta\geq0.80$, $\sigma=0.94$. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on log-transformed values.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

Dissolved Oxygen

COASTWIDE POWER ANALYSIS

There are no active measurements of continuous DO coastwide. Discrete measurements are collected as part of several different monitoring programs including the LDEQ AWQ monitoring program and, more recently, the LDWF fisheries independent monitoring program. The LDEQ AWQ program samples on a monthly basis in the Barataria Basin every four years, while the LDWF program frequency of sampling is dependent upon the gear type used for the fisheries sampling and varies from weekly to monthly to annually at select locations (see Figure 157 for LDWF site locations).

DO concentrations were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). LDEQ AWQ measures water quality parameters discretely on a monthly basis for one year and repeats every four years (Figure 5). It was assumed for the analysis that some element of randomness was incorporated into the selection of their monitoring sites. The sites were then categorized into basins using the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) basin designations, as used by other CPRA monitoring programs. The data were normally distributed and therefore satisfied the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to DO concentrations, separately, with the interaction term season*basin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

- 1. at least one basin mean differs significantly from another basin mean;
- 2. at least one seasonal mean differs significantly from another seasonal mean;
- 3. the means in year 0 differ significantly from the means in year 1, averaged over all seasons and basins;
- 4. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons and basins;
- the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons and basins.

Hypotheses 3 through 5 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Alpha (α) and power were also held constant across analyses at the different spatial scales. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in α generally results in a need for larger sample sizes (Zar, 2010). As a result, the focus of the analysis was to evaluate how sample size requirements change in response to the means of each of the factors calculated at the different spatial scales.

COASTWIDE RESULTS

The results of the power analysis on the coastwide scale indicate that all hypotheses could be tested with a small sample size (10-34 sites; Table 27). Generally, large sample size requirements indicate that the difference being tested is relatively small or that standard deviation is large relative to the difference being tested.

Table 27. Coastwide dissolved oxygen power analysis summary results for hypotheses 1 through 6.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)	# OF SITES
1: Differences among basin means	n/a	0.78	14
2: Differences among seasonal means	n/a	0.22	4
4: +1 year of data	11-16%	0.16-0.23	10-34
5: +3 years of data	6%	0.09	4
6: +5 years of data	6%	0.09	4

CALCASIEU-SABINE BASIN POWER ANALYSIS

DO concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Calcasieu-Sabine Basin during the LDEQ data collection program dating back to 1978 (Figure 105). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

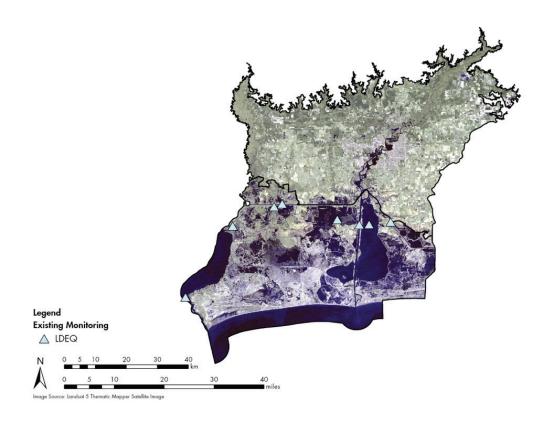


Figure 105. Dissolved oxygen site locations in Calcasieu-Sabine Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network.

CALCASIEU-SABINE BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year, or linear trends in the annual mean over years can be achieved with one field site. Detecting a linear pattern in the annual means over time can be achieved with a sample size between two to six sites (Figure 106; Table 28). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 28. Calcasieu-Sabine Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among seasonal means	n/a	1.57	1
2: +1 years of data	11%	0.73	6
3: +3 years of data	6%	0.44	2
4: +5 years of data	6%	0.44	2

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

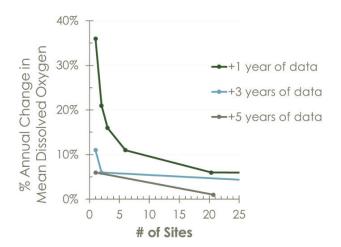


Figure 106. Calcasieu-Sabine Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4.

Results indicate the percent change in mean dissolved oxygen that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.1.72. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

MERMENTAU BASIN POWER ANALYSIS

DO concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Mermentau Basin during the LDEQ data collection program dating back to 1978 (Figure 107). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

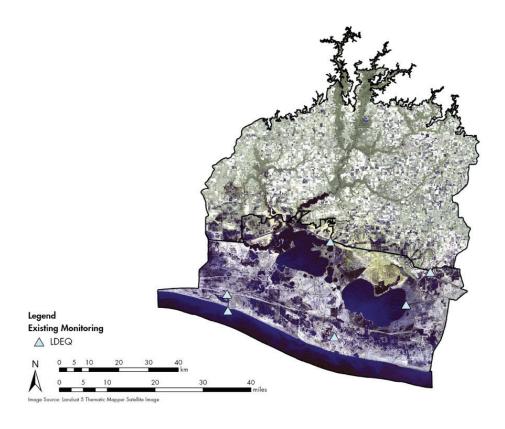


Figure 107. Dissolved oxygen site locations in Mermentau Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network.

MERMENTAU BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year. Detecting a linear pattern in the annual means over time can be achieved with a sample size between four to 11 sites (Table 29). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time (Figure 108).

Table 29. Mermentau Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	1.68	2
2: +1 years of data	11%	0.71	11
3: +3 years of data	6%	0.43	4
4: +5 years of data	6%	0.43	4

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

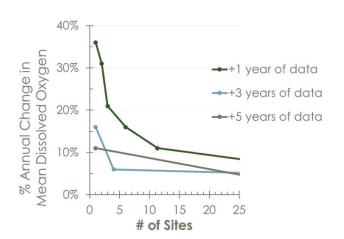


Figure 108. Mermentau Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4.

Results indicate the percent change in mean dissolved oxygen that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =2.23. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

TECHE-VERMILION BASIN POWER ANALYSIS

DO concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Teche-Vermilion Basin during the LDEQ data collection program dating back to 1978 (Figure 109). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

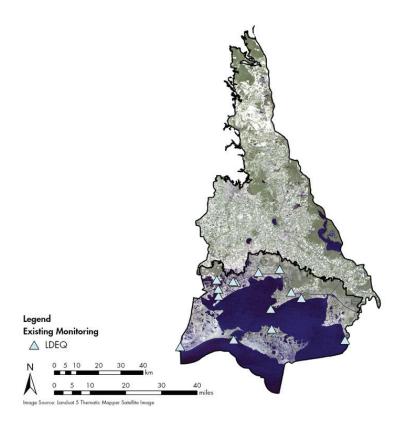


Figure 109. Dissolved oxygen site locations in Teche-Vermilion Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network.

TECHE-VERMILION BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with one field site. Detecting a linear pattern in the annual means over time can be achieved with a sample size between three to seven sites (Table 30). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time (Figure 110).

Table 30. Teche-Vermilion Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among seasonal means	n/a	1.68	1
2: +1 years of data	11%	4.26	7
3: +3 years of data	6%	0.43	3
4: +5 years of data	6%	0.43	3

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

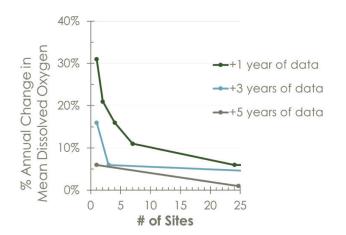


Figure 110. Teche-Vermilion Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4.

Results indicate the percent change in mean dissolved oxygen that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.82. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

ATCHAFALAYA BASIN POWER ANALYSIS

DO concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Atchafalaya Basin during the LDEQ data collection program dating back to 1978 (Figure 111). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

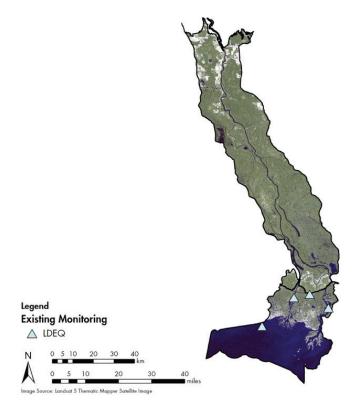


Figure 111. Dissolved oxygen site locations in Atchafalaya Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network.

ATCHAFALAYA BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with a one field site. Detecting a linear pattern in the annual means over time can be achieved with a sample size between two and three sites (Figure 106). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time (Figure 112).

Table 31. Atchafalaya Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	2.20	1
2: +1 years of data	16%	4.62	3
3: +3 years of data	6%	0.46	2
4: +5 years of data	6%	0.46	2

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

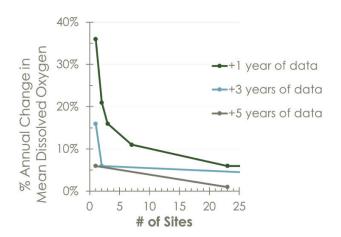


Figure 112. Atchafalaya Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4.

Results indicate the percent change in mean dissolved oxygen that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.92. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

TERREBONNE BASIN POWER ANALYSIS

DO concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Terrebonne Basin during the LDEQ data collection program dating back to 1978 (Figure 113). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

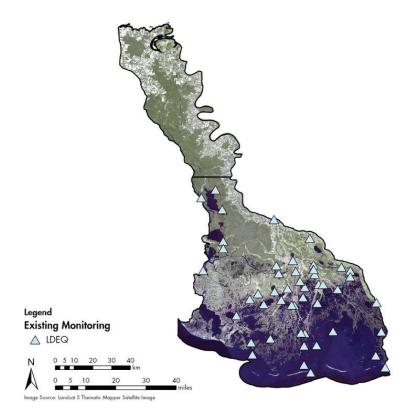


Figure 113. Dissolved oxygen site locations in Terrebonne Basin sampled by LDEQ as part of their Ambient Water Quality Monitoring Network.

TERREBONNE BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with 14 field sites. The standard deviation of the mean dissolved oxygen concentrations (e.g., 2.32) was the highest in Terrebonne Basin compared to the remaining western basins and thus required the greatest number of sites to detect differences among the seasonal means. Detecting a linear pattern in the annual means over time can be achieved with a sample size between two to four sites (Table 32). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time (Figure 114).

Table 32. Terrebonne Basin dissolved oxygen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	1.72	1
2: +1 years of data	16%	3.85	4
3: +3 years of data	6%	0.38	2
4: +5 years of data	6%	0.38	2

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

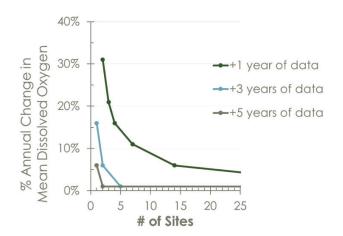


Figure 114. Terrebonne Basin dissolved oxygen power analysis summary results for hypotheses 2 through 4.

Results indicate the percent change in mean dissolved oxygen that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =2.32. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

BARATARIA BASIN POWER ANALYSIS

DO concentrations were obtained from both the LDEO AWO program and the historical USACE Davis Pond monitoring program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). As part of the Davis Pond monitoring program, water samples were obtained on a monthly basis throughout the Barataria Basin from 1998-2009 (Figure 115), while the LDEQ data collection dates back to 1978. In some instances, DO readings were recorded on the bottom and surface of the water, and in other cases it was not specified where the reading was taken. Thus, if more than one reading was provided, an average was taken to represent one DO level for the site. It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. The NHD was then used to classify the monitoring site locations into waterbody types. The NHD contains geographic information on the drainage network and classifies features such as rivers, streams, canals, lakes, ponds, coastline, dams, and stream gauges. The features were consolidated such that sites were classified as either open water (e.g., lakes, ponds) or channels (e.g., streams, canals). The sites were further classified based on their position in the estuary (upper, mid-, and lower subbasins as indicated in Figure 115) and the season in which the data were collected. The squareroot transformation was used in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the square-root-transformed DO concentrations with the interaction term season*waterbody type*subbasin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

- 1. at least one subbasin mean differs significantly from another subbasin mean;
- 2. at least one seasonal mean differs significantly from another seasonal mean;
- 3. waterbody type means are significantly different from one another;
- the means in year 0 differ significantly from the means in year
 averaged over all water body types, seasons, and subbasins;
- 5. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all water body types, seasons, and subbasins;
- 6. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all water body types, seasons, and subbasins.

Hypotheses 4 through 6 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Further, hypotheses 2 through 6 were conducted for each subbasin independently in order to evaluate how sample size requirements may differ at a subbasin scale relative to the basin scale. Although standard deviation (σ) may differ when calculated at the basin versus subbasin scale, the basin scale estimate of standard deviation was used in the subbasin analysis. Alpha (α) and power were also held constant across analyses. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in α generally results in a need for larger sample sizes (Zar, 2010). As a result, the focus of the analysis was to evaluate how sample size requirements change in response to the means of each of the factors calculated at the different spatial scales.

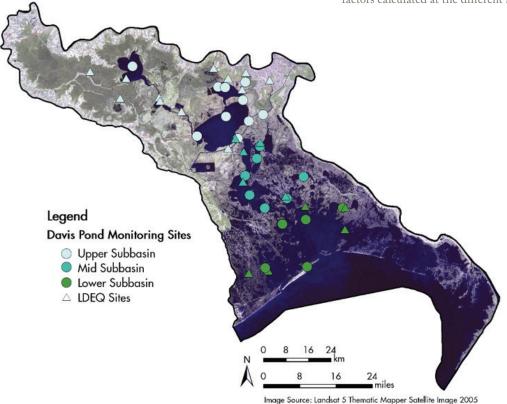


Figure 115. Dissolved oxygen site locations for the USACE Davis Pond Monitoring Program including those sampled by LDEQ as part of their Ambient Water Quality Monitoring Network.

Sites were classified into subbasins using USACE categorization.

BARATARIA BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that all hypotheses could be tested with a moderate sample size (6-14 sites; Table 33). Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 116). However, a threshold point is evident in Figure 116 where an increase in sample size beyond 10 results in a very small shift in the percentage of change. For example, from a sample size of 4 to 10, the difference in the y-axis is approximately 5%, while an increase from 10 to 20 sites only results in a change of less than 1%. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 33. Barataria Basin dissolved oxygen power analysis summary results for hypotheses 1 through 6.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among subbasin means	n/a	0.90	14
2: Differences among seasonal means	n/a	1.84	4
3: Differences among water body type means	n/a	1.18	10
4: +1 years of data	10-6%	0.85-1.45	6-10
5: +3 years of data	~5%	0.71	6-10
6: +5 years of data	3-1%	0.13-0.42	6-10

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and waterbody types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

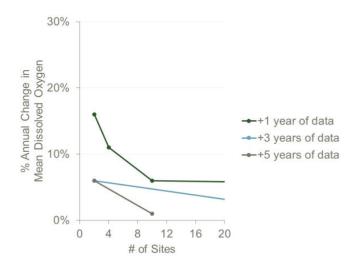


Figure 116. Barataria Basin dissolved oxygen power analysis summary results for hypotheses 4 through 6.

Results indicate the percent change in mean dissolved oxygen that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.42. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on square-root-transformed values.

SUBBASIN

The results of the power analysis on the subbasin scale exhibit comparable sample size requirements for each hypothesis for an individual subbasin as they do for the basin as a whole (Table 34 and Figure 117). The only exception is the mid-subbasin hypothesis for detecting changes among waterbody types. The large sample size required (113 sites) for the mid-subbasin is because the average change is extremely small (0.35 mg L-1), indicating that differences do not exist between the water body types (Table 34). The consistency in the estimates stems from the similarities in the means among subbasins such that the basinwide mean is representative of the mean calculated on a subbasin scale. As a result, if subbasin scale questions are of interest, the total sample size for the basin would be approximately three times larger than if the question of interest is on a basinwide scale.

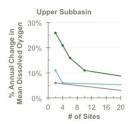
Table 34. Barataria subbasin dissolved oxygen power analysis summary results for hypotheses 2 through 6.

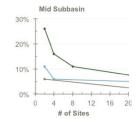
7
S
⋖
8
8
\supset
S
\simeq
ш
<u>-</u>
_
\supset

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	1.78	4
3: Differences among water body type means	n/a	2.25	3
4: +1 year of data	20-11%	1.44-2.73	5-10
5: +3 years of data	6%	0.77	5-10
6: +5 years of data	6-5%	0.63-0.77	5-10

z

Ç	I)
4	<	ζ
ć	¥	3
ć	ž	3
		5
ċ	,	5
(_	١
4	۶	


۰	7		7	
d	8			
è				
(r		۰
		1	è	
4	ς		L	
ś			3	
ć				
Ç	ú	ŕ	۹	
1	_		۰	
6	٠	ú	ø	
ı	3			
۰	٩	2	6	
į	۹		ì	
*				
1	r	۹	١	


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	1.91	4
3: Differences among water body type means	n/a	0.35	113
4: +1 year of data	20-11%	3.32-1.75	3-8
5: +3 years of data	6%	0.93	3-8
6: +5 years of data	6-5%	0.93-0.77	3-8

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	1.80	4
3: Differences among water body type means	n/a	0.82	20
4: +1 year of data	20-11%	1.62-3.09	3-10
5: +3 years of data	6%	0.87	3-10
6: +5 years of data	6-5%	0.72-0.87	3-10

i Detecting differences within subbasins, seasons, and waterbody types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

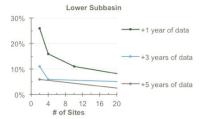


Figure 117. Barataria Basin dissolved oxygen power analysis summary results for hypotheses 4 through 6.

Results indicate the percent change in dissolved oxygen that can be detected given a range of sample sizes with $\alpha=0.05$, $\beta\geq0.80$, $\sigma=0.42$. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on square-root-transformed values.

PONTCHARTRAIN REGION POWER ANALYSIS

DO concentrations were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). The LDEQ data collection occurred in both the upper and lower portions of the Pontchartrain Region (Figure 103). In some instances, DO readings were recorded on the bottom and surface of the water, and in other cases it was not specified where the reading was taken. Thus, if more than one reading was provided, an average was taken to represent one DO level for the site. It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. The data were analyzed separately for the upper and lower Pontchartrain given the relatively large size of the basin and the different marine and freshwater influences each of these areas experience, as was done for the Barataria analysis. No transformation was needed in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

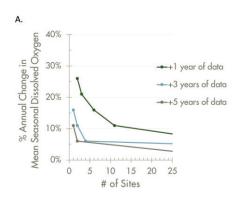
The following hypotheses were then tested for the power analysis for each subbasin (upper and lower Pontchartrain):

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were held constant across analyses.

PONTCHARTRAIN REGION RESULTS

The results of the power analysis in the Pontchartrain Region indicate detecting differences in seasonal means within a year requires a sample size of 5 (3 in upper and 2 in lower Pontchartrain; Table 35). Similarly, the results indicate that for detecting a linear pattern in the annual means over time, averaged over all seasons, can be achieved with a sample size of 6 (4 in upper and 2 in lower Pontchartrain; Figure 118). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.


Table 35. Pontchartrain Region dissolved oxygen power analysis summary results for hypotheses 1 through 4.

Z	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (μg L-1)ii	# OF SITES
R TRA	1: Differences among seasonal means	n/a	1.83	3
PPEF HAR	2: +1 years of data	20%	1.30	4
NTC	3: +3 years of data	6%	0.39	4
РО	4: +5 years of data	6%	0.39	4

N N	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (µg L-1)ii	# OF SITES
R T R	1: Differences among seasonal means	n/a	1.74	2
OWE HAR	2: +1 years of data	20%	1.55	2
NTCH	3: +3 years of data	6%	0.47	2
РО	4: +5 years of data	6%	0.47	2

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

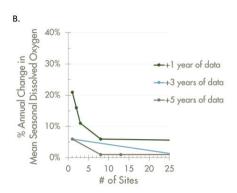


Figure 118. Pontchartrain Region dissolved oxygen power analysis summary results for hypotheses 4 through 6.

Results indicate the percent change in mean dissolved oxygen that can be detected given a range of sample sizes with α =0.05, β ≥0.80, (A) σ =2.05 and (B) σ =1.1. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

Nutrients

COASTWIDE POWER ANALYSIS

Nutrient concentrations are measured as part of the LDEQ AWQ statewide monitoring program. The LDEQ AWQ program samples on a monthly basis every four years. Total nitrogen (TN) and total phosphorus (TP) concentrations were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). LDEQ AWQ measures water quality parameters discretely on a monthly basis for one year and repeats every four years (Figure 5). It was assumed for the analysis that some element of randomness was incorporated into the selection of their monitoring sites. The sites were then categorized into basins using Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) basin designations, as used by other CPRA monitoring programs. The natural log transformation was used on both TN and TP in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural logtransformed TN and TP concentrations, separately, with the interaction term season*basin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

- 1. at least one basin mean differs significantly from another basin mean;
- 2. at least one seasonal mean differs significantly from another seasonal mean;

- 3. the means in year 0 differ significantly from the means in year 1, averaged over all seasons and basins;
- 4. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons and basins;
- the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons and basins.

Hypotheses 3 through 5 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Alpha (α) and power were also held constant across analyses at the different spatial scales. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in α generally results in a need for larger sample sizes (Zar, 2010). As a result, the focus of the analysis was to evaluate how sample size requirements change in response to the means of each of the factors calculated at the different spatial scales.

COASTWIDE RESULTS

The results of the power analysis on the coastwide scale indicate that detecting linear trends in the annual TN mean over years could be achieved with a relatively small sample size between 27-57 sites (Table 36) and a smaller sample size for detecting annual changes in TP (10-34; Table 37). Detecting changes among seasons, however, requires a larger sample size for TP (260) because of the relatively small average change that occurs among season (0.01 mg L-1). Generally, large sample size requirements indicate that the difference being tested is relatively small or that standard deviation is large relative to the difference being tested.

Table 36. Coastwide total nitrogen power analysis summary results for hypotheses 1 through 5.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)	# OF SITES
1: Differences among basin means	n/a	0.31	7
2: Differences among seasonal means	n/a	0.05	50
3: +1 year of data	11-16%	0.03-0.05	27-57
4: +3 years of data	6-11%	0.02-0.03	7-20
5: +5 years of data	6%	0.02	7

Table 37. Coastwide total phosphorus power analysis summary results for hypotheses 1 through 5.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)	# OF SITES
1: Differences among basin means	n/a	0.05	10
2: Differences among seasonal means	n/a	0.01	260
3: +1 year of data	6-11%	0.02-0.03	10-34
4: +3 years of data	5-6%	0.01-0.02	4-28
5: +5 years of data	1-6%	0.002-0.01	4-37

CALCASIEU-SABINE BASIN POWER ANALYSIS

TN and TP concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Calcasieu-Sabine Basin during the LDEQ data collection program dating back to 1978 (Figure 105). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling

Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

CALCASIEU-SABINE BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal TN means within a year can be achieved with three field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between 78-110 sites (Table 38). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time. Note that the TN results suggest that a large sample size requirement is needed to detect relatively small differences or that standard deviation is large relative to the difference being tested.

The results of the power analysis on the basinwide scale indicate that detecting differences in seasonal TP means within a year can be achieved with 11 field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between five and seven sites (Table 39). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time (Figure 119, Figure 120).

Table 38. Calcasieu-Sabine Basin total nitrogen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among seasonal means	n/a	0.13	3
2: +1 years of data	16%	0.04	110
3: +3 years of data	6%	0.02	78
4: +5 years of data	6%	0.02	78

Table 39. Calcasieu-Sabine Basin total phosphorous power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.012	11
2: +1 years of data	16%	0.023	7
3: +3 years of data	6%	0.010	5
4: +5 years of data	6%	0.010	5

i Detecting differences within seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for seasons from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

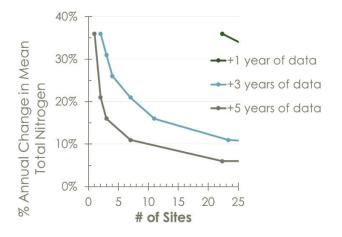


Figure 119. Calcasieu-Sabine Basin total nitrogen power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TN that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.458. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

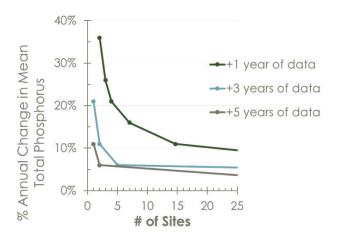


Figure 120. Calcasieu-Sabine Basin total phosphorous power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TP that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.01. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

MERMENTAU BASIN POWER ANALYSIS

TN and TP concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Mermentau Basin during the LDEQ data collection program dating back to 1978 (Figure 107). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

MERMENTAU BASIN RESULTS

The TN results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with four field sites. Detecting a linear pattern in the annual means over time can be achieved with high sample size of between 76 to 732 sites (Table 40, Figure 121). Also, sample size can be reduced (to 76 sites) if data are collected for several years. The variability could also be reduced and thus sample sizes reduced if the coastal area of this basin was divided into regions to account for the variability prior to the power analysis being performed.

The TP results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with six field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between eight and nine sites (Table 41, Figure 122). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 40. Mermentau Basin total nitrogen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.22	6
2: +1 years of data	21%	0.01	732
3: +3 years of data	16%	0.01	126
4: +5 years of data	11%	0.01	76

Table 41. Mermentau Basin total phosphorus power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.056	6
2: +1 years of data	21%	0.052	8
3: +3 years of data	6%	0.017	9
4: +5 years of data	6%	0.017	9

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

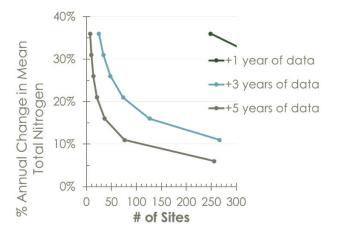


Figure 121. Mermentau Basin total nitrogen power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TN that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.685. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

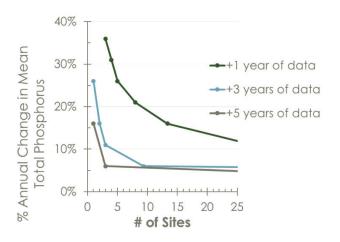


Figure 122. Mermentau Basin total phosphorous power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TP that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.906. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

TECHE-VERMILION BASIN POWER ANALYSIS

TN and TP concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Teche-Vermilion Basin during the LDEQ data collection program dating back to 1978 (Figure 109). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling

Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

TECHE-VERMILION BASIN RESULTS

The TN results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with four field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between 66 and 661 sites (Table 42, Figure 123). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time. Note that the TN results suggest that a large sample size requirement is needed to detect relatively small differences or that standard deviation is large relative to the difference being tested.

The TP results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with six field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between three and five sites (Table 43, Figure 124). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 42. Teche-Vermilion Basin total nitrogen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among seasonal means	n/a	0.18	4
2: +1 years of data	21%	0.01	661
3: +3 years of data	21%	0.01	66
4: +5 years of data	16%	0.00	69

Table 43. Teche-Vermilion Basin total phosphorus power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.024	6
2: +1 years of data	16%	0.043	5
3: +3 years of data	6%	0.017	3
4: +5 years of data	6%	0.017	3

i Detecting differences within seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for seasons from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.



Figure 123. Teche-Vermilion Basin total nitrogen power analysis results for hypotheses 1 through 4.

Results indicate the percent change in TN that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.570. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

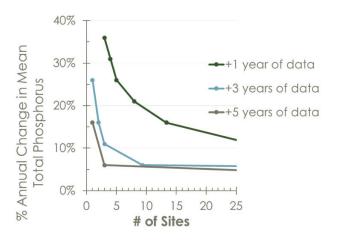


Figure 124. Teche-Vermilion Basin total phosphorous power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TP that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.520. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

ATCHAFALAYA BASIN POWER ANALYSIS

TN and TP concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Atchafalaya Basin during the LDEQ data collection program dating back to 1978 (Figure 111). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

ATCHAFALAYA BASIN RESULTS

The TN results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with eleven field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between five and 26 sites (Table 44, Figure 125). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

The TP results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with 11 field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between two and three sites (Table 45, Figure 126). Also evident in the graphs is that as data are collected in the coastal area for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 44. Atchafalaya Basin total nitrogen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.13	11
2: +1 years of data	21%	0.13	26
3: +3 years of data	16%	0.10	5
4: +5 years of data	10%	0.06	5

Table 45. Atchafalaya Basin total phosphorus power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.020	11
2: +1 years of data	16%	0.055	3
3: +3 years of data	6%	0.018	2
4: +5 years of data	6%	0.018	2

i Detecting differences within subbasins was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

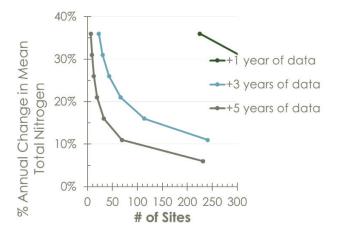


Figure 125. Atchafalaya Basin total nitrogen power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TN that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.375. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

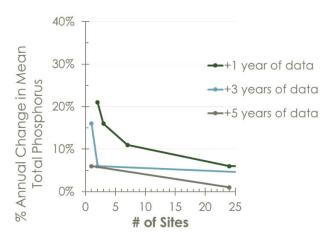


Figure 126. Atchafalaya Basin total phosphorous power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TP that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.433. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

TERREBONNE BASIN POWER ANALYSIS

TN and TP concentrations were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). Water samples were obtained on a monthly basis throughout the Terrebonne Basin during the LDEQ data collection program dating back to 1978 (Figure 113). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the DO concentrations with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

TERREBONNE BASIN RESULTS

The TN results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with seven field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between four and 34 sites (Table 46, Figure 127). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

The TP results of the power analysis on the basinwide scale indicate that detecting differences in seasonal means within a year can be achieved with 14 field sites. Detecting a linear pattern in the annual means over time can be achieved with a sample size between six and eight sites (Table 47, Figure 128). Also evident in the graphs is that as data are collected in the coastal area for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 46. Terrebonne Basin total nitrogen power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.04	7
2: +1 years of data	21%	0.05	34
3: +3 years of data	21%	0.04	4
4: +5 years of data	11%	0.02	4

Table 47. Terrebonne Basin total phosphorus power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.070	14
2: +1 years of data	21%	0.016	6
3: +3 years of data	6%	0.005	8
4: +5 years of data	6%	0.005	8

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

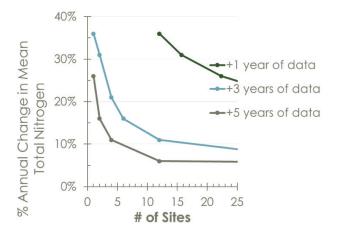


Figure 127. Terrebonne Basin total nitrogen power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TN that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.425. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

Figure 128. Terrebonne Basin total phosphorous power analysis results for hypotheses 2 through 4.

Results indicate the percent change in TP that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.852. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

BARATARIA BASIN POWER ANALYSIS

TN and TP concentrations were obtained from both the LDEQ AWQ program and the historical USACE Davis Pond monitoring program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). As part of the Davis Pond monitoring program, water samples were obtained on a monthly basis throughout the Barataria Basin, while the LDEQ data collection dates back to 1978 (Figure 115). It is unknown how the original sampling locations were selected in either case, but it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The NHD was then used to classify the monitoring site locations into water body types. The NHD contains geographic information on the drainage network and classifies features such as rivers, streams, canals, lakes, ponds, coastline, dams, and stream gauges. The features were consolidated such that sites were classified as either open water (e.g., lakes, ponds) or channels (e.g., streams, canals). The sites were further classified based on their position in the estuary (upper, mid-, and lower subbasins as indicated in Figure 113 and the season in which they were collected. The square-root transformation was used on both TN and TP in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the square-root-transformed TN and TP concentrations, separately, with the interaction term season*waterbody type*subbasin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

- 1. at least one subbasin mean differs significantly from another subbasin mean;
- 2. at least one seasonal mean differs significantly from another seasonal mean:
- 3. waterbody type means are significantly different from one another;
- 4. the means in year 0 differ significantly from the means in year 1, averaged over all water body types, seasons, and subbasins;
- 5. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all water body types, seasons, and subbasins;

6. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all water body types, seasons, and subbasins.

Hypotheses 4 through 6 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Further, hypotheses 2 through 6 were conducted for each subbasin independently in order to evaluate how sample size requirements may differ at a subbasin scale relative to the basin scale. Although standard deviation (σ) may differ when calculated at the basin versus subbasin scale, the basin scale estimate of standard deviation was used in the subbasin analysis. Alpha (σ) and power were also held constant across analyses at the different spatial scales.

BARATARIA BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual TN mean over years could be achieved with a relatively small sample size (5-10 sites; Table 48) and a slightly higher sample size for detecting annual changes in TP (7-16; Table 49). In order to detect differences among subbasins, TN requires substantially more samples than TP (35 vs.4 sites), because the average change between subbasins is very small (0.077 mg L-1 TN; Table 48). Detecting changes among seasons and water body types requires large sample sizes for both TN and TP. Generally, large sample size requirements indicate that the difference being tested is relatively small or that standard deviation is large relative to the difference being tested.

Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 129 and Figure 130). However, a threshold point is evident in Figure 129 where an increase in sample size beyond 10 results in a very small shift in the percentage of change. For example, from a sample size of 5 to 10, the difference in the y-axis is approximately 9%, while an increase from 10 to 20 sites only results in a change of less than 1%. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time. The same patterns occur for TP, as well (Figure 130).

Table 48. Barataria Basin total nitrogen power analysis summary results for hypotheses 1 through 6.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among subbasin means	n/a	0.077	35
2: Differences among seasonal means	n/a	0.041	67
3: Differences among water body type means	n/a	0.055	237
4: +1 years of data	11-20%	0.093-0.176	5-10
5: +3 years of data	6%	0.050	5-10
6: +5 years of data	5-6%	0.041-0.050	5-10

Table 49. Barataria Basin total phosphorus power analysis summary results for hypotheses 1 through 6.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among subbasin means	n/a	0.063	4
2: Differences among seasonal means	n/a	0.012	86
3: Differences among water body type means	n/a	0.017	60
4: +1 years of data	11-20%	0.025-0.047	7-16
5: +3 years of data	6%	0.013	7-16
6: +5 years of data	5-6%	0.011-0.013	7-16

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

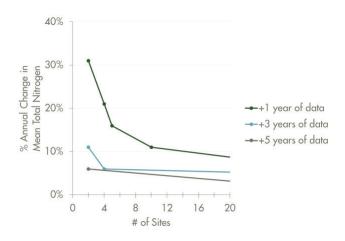


Figure 129. Barataria Basin total nitrogen power analysis results for hypotheses 4 through 6.

Results indicate the percent change in TN that can be detected given a range of sample sizes with α =0.05, β ≥0.80, α =0.186. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on square-root-transformed values.

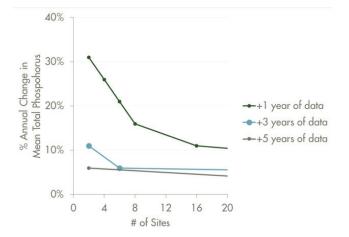


Figure 130. Barataria Basin total phosphorous power analysis results for hypotheses 4 through 6.

Results indicate the percent change in TP that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.121. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on square-root-transformed values.

SUBBASIN

The results of the power analysis on the subbasin scale exhibit comparable sample size requirements for detecting linear trends through time for an individual subbasin as they do for the basin as a whole (Figure 131 and Figure 132). An exception is the mid-subbasin hypothesis for detecting changes among water body types. The large sample size required (> 1000 sites) for the mid-

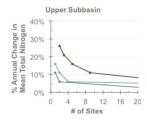
subbasin is because the average change is extremely small (0.006 mg L-1), indicating that there are not strong differences between the water body types for either TN or TP (Table 50 and Table 51). The consistency in the estimates stems from the similarities in the means among subbasins such that the basinwide mean is representative of the mean calculated on a subbasin scale. As a result, if subbasin scale questions are of interest, the total sample size for the basin would need to be increased.

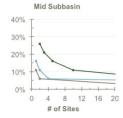
Table 50. Barataria subbasin total nitrogen power analysis summary results for hypotheses 2 through 6.

	2	2	
(
4		1	Ę
6			3
6	2	Ć	3
:)
9	J	,)
6			
			4
6	3	L	
6	2	L	
i			٥

_	
\boldsymbol{Z}	
_	
S	
_	
8	

_	,
_	-
=	=
U	
<	ζ
	2
ď	2
Ξ)
U)
۵	
ш	d
5	>
>	>
C)
	٦.


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	0.050	45
3: Differences among water body type means	n/a	0.052	60
4: +1 years of data	11-20%	0.103-0.196	4-9
5: +3 years of data	6%	0.0549	4-9
6: +5 years of data	5-6%	0.0456-0.0549	4-9


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	0.034	91
3: Differences among water body type means	n/a	0.006	> 1000
4: +1 years of data	11-20%	0.092-0.174	4-10
5: +3 years of data	6%	0.0490	4-10
6: +5 years of data	5-6%	0.0406-0.0490	4-10

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	0.192	91
3: Differences among water body type means	n/a	n/a	> 1000
4: +1 years of data	11-20%	0.076-0.145	4-10
5: +3 years of data	6%	0.0407	4-10
6: +5 years of data	5-6%	0.0338-0.0407	4-10

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

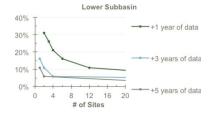


Figure 131. Barataria subbasin total nitrogen power analysis results for hypotheses 4 through 6.

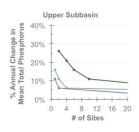
Results indicate the percent change in TN that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.186. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on square-root-transformed values.

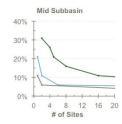
Table 51. Barataria subbasin total phosphorus power analysis summary results for hypotheses 2 through 6.

ā	Z		
Ē			
(J	,	2
4	<	1	ľ
ś	2	Ć	3
ś			
)
(
6			
I	4	L	
É	3	L	
6			
٠			2

MID-SUBBASIN

_	
\mathbf{z}	
=	
S	
\triangleleft	
B	
8	
_	
\supset	
S	
~	
ш	
$\overline{}$	
5	
_	
O	
_	


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
2: Differences among seasonal means	n/a	0.010	164
3: Differences among water body type means	n/a	0.92	4
4: +1 years of data	15-20%	0.051-0.070	6-10
5: +3 years of data	6%	0.020	6-10
6: +5 years of data	5-6%	0.016-0.020	6-10


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	0.013	54
3: Differences among water body type means	n/a	0.104	> 1000
4: +1 years of data	11-20%	0.024-0.046	5-10
5: +3 years of data	6%	0.013	5-10
6: +5 years of data	5-6%	0.011-0.013	5-10

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
2: Differences among seasonal means	n/a	0.016	29
3: Differences among water body type means	n/a	0.055	27
4: +1 years of data	11-20%	0.015-0.028	5-12
5: +3 years of data	6%	0.008	5-12
6: +5 years of data	5-6%	0.007-0.008	5-12

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

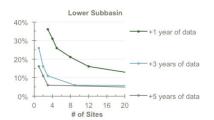


Figure 132. Barataria subbasin total phosphorous power analysis results for hypotheses 4 through 6.

Results indicate the percent change in TP that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.122. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on square-root-transformed values.

PONTCHARTRAIN REGION POWER ANALYSIS

TN and TP concentrations were obtained from Lundberg et al. (2014) and Total Kjeldahl Nitrogen (TKN) and TP from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). The Lundberg et al. (2014) data collection effort occurred in Breton Basin while the LDEQ data collection occurred in both the upper and lower portions of the Pontchartrain Region, including some overlap in Breton Basin (Figure 103). The datasets were analyzed separately and the LDEQ data were further divided into upper and lower Pontchartrain given the relatively large size of the region and the different marine and freshwater influences each of these areas experience. The natural logarithmic transformation was used in order to approximate normality and satisfy the assumptions of the GLM, except for TP in Breton where no transformation was needed. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the log-transformed concentrations, where applicable, with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis for each subbasin (Breton and upper and lower Pontchartrain):

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;

- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were held constant across analyses.

PONTCHARTRAIN REGION RESULTS

The results of the power analysis in the Pontchartrain Region indicate detecting differences in seasonal TN or TKN means within a year requires a sample size of 275 (Table 52), as a result of the relatively high standard deviations in the region (Figure 133). However, the sample size can be reduced to 47 if data are collected for longer periods of time (>3 years; Table 52). Detecting differences in seasonal TP means within a year requires a sample size of 100 (Table 53), again driven largely by the variability in the upper Pontchartrain (Figure 134)). As with the nitrogen results, sample size can be reduced considerably (down to 15) if data are collected for several years (Table 53).

Table 52. TKN (upper and lower Pontchartrain) and TN (Breton) summary results of the power analysis for hypotheses 1 through 4.

NIA	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
~	1: Differences among seasonal means	n/a	0.043	191
PPER HART	2: +1 years of data	20%	0.048	105
NTC	3: +3 years of data	20%	0.048	11
PON	4: +5 years of data	10%	0.025	11

Z	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
K I K	1: Differences among seasonal means	n/a	0.156	8
ĕ E	2: +1 years of data	20%	0.057	37
2	3: +3 years of data	20%	0.057	4
5	4: +5 years of data	11%	0.032	4

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.072	76
2: +1 years of data	20%	0.029	320
3: +3 years of data	20%	0.029	32
4: +5 years of data	11%	0.016	32

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

BRETON

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

Table 53. Pontchartrain Region TP power analysis summary results for hypotheses 1 through 4.

Z	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
R T R A	1: Differences among seasonal means	n/a	0.019	79
PPER HART	2: +1 years of data	20%	0.048	7
NTC	3: +3 years of data	7%	0.019	7
РО	4: +5 years of data	6%	0.016	7

N	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
~ L	1: Differences among seasonal means	n/a	0.017	15
OWE HAR	2: +1 years of data	11-20%	0.037	2-4
NTCH	3: +3 years of data	6%	0.013	2
РО	4: +5 years of data	6%	0.013	2

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	0.019	6
2: +1 years of data	20%	0.020	4
3: +3 years of data	6%	0.006	4
4: +5 years of data	6%	0.006	4

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

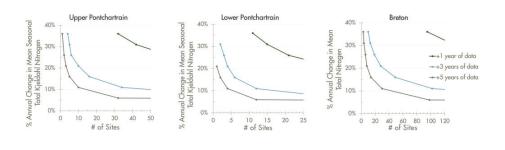
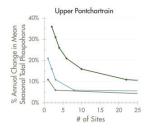
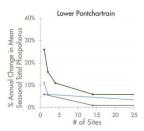




Figure 133. Pontchartrain Region TKN and TN power analysis results for hypotheses 2 through 4.

Results indicate the percent change in mean TKN or TN concentrations that can be detected given a range of sample sizes with α =0.05, β ≥0.80, (Upper) α =0.63, (Lower) α =0.50, (Breton) α =0.54. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

BRETON

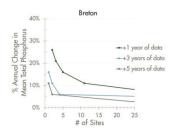


Figure 134. Pontchartrain Region TP power analysis results for hypotheses 2 through 4.

Results indicate the percent change in mean TP concentrations that can be detected given a range of sample sizes with α =0.05, β ≥0.80, (Upper) σ =0.83, (Lower) σ =0.44, (Breton) σ =0.03. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

Salinity

COASTWIDE POWER ANALYSIS

An existing network of salinity gauges is located in canals, bayous, and ponds adjacent to wetlands as part of the Coastwide Reference Monitoring System (CRMS) and in the larger open water bodies and is operated by the U.S. Geological Survey. Salinity concentrations were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). LDEQ AWQ measures water quality parameters discretely on a monthly basis for one year and repeats every four years (Figure 5). It was assumed for the analysis that some element of randomness was incorporated into the selection of their monitoring sites. The sites were then categorized into basins using the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) basin designation, as used by other CPRA monitoring programs. The natural-logarithmic transformation was used on monthly mean salinity in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to salinity concentrations with the interaction term season*basin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

- 1. at least one basin mean differs significantly from another basin mean;
- 2. at least one seasonal mean differs significantly from another seasonal mean;

- 3. the means in year 0 differ significantly from the means in year 1, averaged over all seasons and basins;
- 4. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons and basins;
- the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons and basins.

Hypotheses 3 through 5 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Alpha (α) and power were also held constant across analyses at the different spatial scales. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in α generally results in a need for larger sample sizes (Zar, 2010). As a result, the focus of the analysis was to evaluate how sample size requirements change in response to the means of each of the factors calculated at the different spatial scales.

COASTWIDE RESULTS

The results of the power analysis indicate that all hypotheses could be tested with a sample size between 34-115 sites (Table 54). Detecting differences among seasons or basins requires a sample size on the lower end given that the average change is relatively large (Table 54). Detecting changes from one year to the next or over multiple years requires different sample sizes depending on the level of change detectable and the number of years for testing this change. The longer data are collected, the ability to detect change improves.

Table 54. Coastwide salinity power analysis summary results for hypotheses 1 through 5.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)	# OF SITES
1: Differences among basin means	n/a	1.79	7
2: Differences among seasonal means	n/a	0.47	34
3: +1 year of data	20-25%	0.31-0.40	75-115
4: +3 years of data	11-16%	0.16-0.24	37-120
5: +5 years of data	6-10%	0.08-0.14	18-37

i Detecting differences within basins and seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for basins and seasons from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

CALCASIEU-SABINE BASIN POWER ANALYSIS

Salinity data were obtained from CRMS monitoring program and USGS Louisiana Water Science Center (Figure 135) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) for the Calcasieu-Sabine Basin. The data were collected at 15- or 30-minute intervals as well as one-hour intervals. Data collected at less than one-hour interval were then averaged to hourly data to combine with the one-hour interval sites to create an exemplary data set. In order to obtain an accurate representation of average monthly conditions, only sites that contained at least 20 days' worth of data were used in the analysis for that month. The CRMS program used a stratified random design with proportional allocation in the selection of sites (Steyer et al., 2003b), but it is unknown how the original sampling locations were selected for the USGS sites and it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The naturallogarithmic transformation was used on monthly mean salinity in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed salinity with the term season. This term was used to reduce the

residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

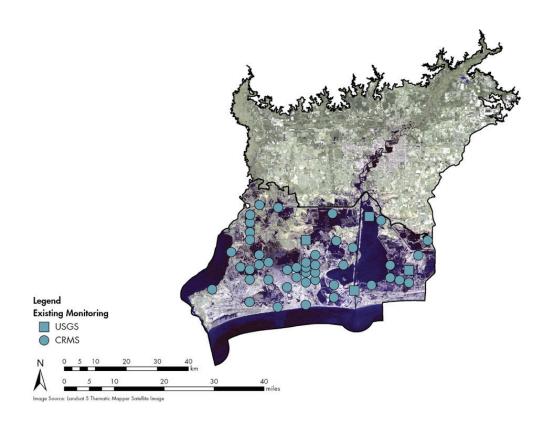


Figure 135. CRMS and USGS continuous salinity gauge site locations in Calcasieu-Sabine Basin.

CALCASIEU-SABINE BASIN RESULTS

CRMS sites occupying canals and bayous adjacent to wetlands are sufficient for detecting seasonal and annual changes within the canals. Thus, the remaining discussion pertains to the analysis of the open water bodies. The results for the open water body type indicate that all hypotheses could be tested with a moderate sample size (3-9 sites; Table 55). Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 136). However, a threshold point is evident in Figure 136 where an increase in sample size beyond 9 results in a very small shift in the percentage of change. For example, with one year of data, with a sample size of 9 to 15, the difference in the y-axis is approximately 5%, while an increase from 15 to 31 sites still only results in a change of 5%. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 55. Calcasieu-Sabine Basin salinity power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)**	# OF SITES
1: Differences among seasonal means	n/a	0.01	44
2: +1 years of data	21%	0.03	9
3: +3 years of data	11%	0.02	3
4: +5 years of data	6%	0.01	3

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

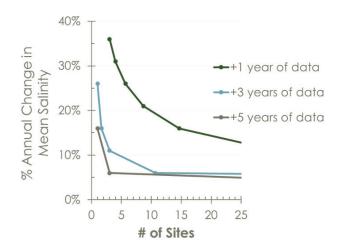


Figure 136. Calcasieu-Sabine Basin salinity power analysis results in open water bodies for hypotheses 2 through 4.

Results indicate the percent change in salinity that can be detected given a range of sample sizes with α =0.05, β ≥0.80, α =1.50. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

MERMENTAU BASIN POWER ANALYSIS

Salinity data were obtained from CRMS monitoring program and USGS Louisiana Water Science Center (Figure 137) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) for the Mermentau Basin. The data were collected at 15- or 30-minute intervals as well as one-hour intervals. Data collected at less than one-hour interval was then averaged to hourly data to combine with the other sites that have one-hour interval data to create an exemplary data set. In order to obtain an accurate representation of average monthly conditions, only sites that contained at least 20 days' worth of data were used in the analysis for that month. The CRMS program used a stratified random design with proportional allocation in the selection of sites (Steyer et al., 2003b), but it is unknown how the original sampling locations were selected for the USGS sites and it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The natural-logarithmic transformation was used on monthly mean salinity in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed salinity with the term season. This term

was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

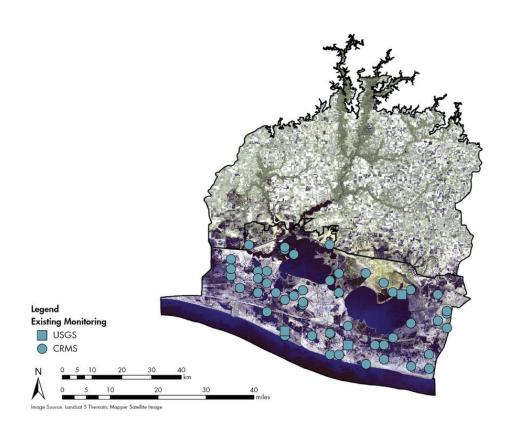


Figure 137. CRMS and USGS continuous salinity gauge site locations in Mermentau Basin.

MERMENTAU BASIN RESULTS

CRMS sites occupying canals and bayous adjacent to wetlands are sufficient for detecting seasonal and annual changes within the canals. Thus, the remaining discussion pertains to the analysis of the open water bodies. The results for the open water body type indicate that all hypotheses could be tested with a moderate sample size (3-15 sites; Table 56). Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 138). However, a threshold point is evident in Figure 138 where an increase in sample size beyond 15 results in a very small shift in the percentage of change. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 56. Mermentau Basin salinity power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)"	# OF SITES
1: Differences among seasonal means	n/a	0.005	66
2: +1 years of data	16%	-0.01	15
3: +3 years of data	11%	-0.01	3
4: +5 years of data	6%	-0.01	3

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

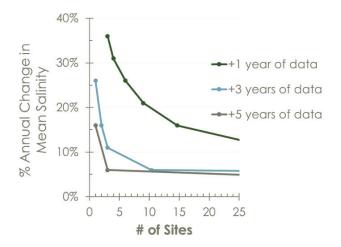


Figure 138. Mermentau Basin salinity power analysis results in open water bodies for hypotheses 2 through 4.

Results indicate the percent change in salinity that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.82. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

TECHE-VERMILION BASIN POWER ANALYSIS

Salinity data were obtained from CRMS monitoring program and USGS Louisiana Water Science Center (Figure 139) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) for the Teche-Vermilion Basin. The data were collected at 15- or 30-minute intervals as well as one-hour intervals. Data collected at less than one-hour interval was then averaged to hourly data to combine with the other one-hour intervals to create an exemplary data set. In order to obtain an accurate representation of average monthly conditions, only sites that contained at least 20 days' worth of data were used in the analysis for that month. The CRMS program used a stratified random design with proportional allocation in the selection of sites (Steyer et al., 2003b), but it is unknown how the original sampling locations were selected for the USGS sites and it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The natural-logarithmic transformation was used on monthly mean salinity in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed salinity with the term season. This term

was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

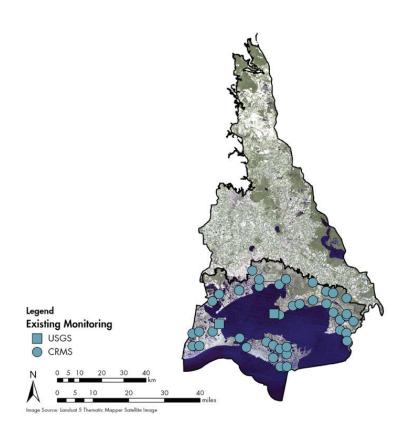


Figure 139. CRMS and USGS continuous salinity gauge site locations in Teche-Vermilion Basin.

TECHE-VERMILION BASIN RESULTS

CRMS sites occupying canals and bayous adjacent to wetlands are sufficient for detecting seasonal and annual changes within the canals. Thus, the remaining discussion pertains to the analysis of the open water bodies. The results for the open water body type indicate that all hypotheses could be tested with a moderate sample size (7-10 sites; Table 57). Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 140). However, a threshold point is evident in Figure 140 where an increase in sample size beyond 10 results in a very small shift in the percentage of change. For example, two to 10 sites provide a 20% detection of change while there is only a gain of a 5% change from 10 to 21 sites. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 57. Teche-Vermilion Basin salinity power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)"	# OF SITES
1: Differences among seasonal means	n/a	0.014	10
2: +1 years of data	16%	-0.02	10
3: +3 years of data	6%	-0.01	7
4: +5 years of data	6%	-0.01	7

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

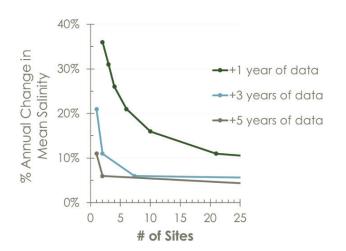


Figure 140. Teche-Vermilion Basin salinity power analysis results in open water bodies for hypotheses 2 through 4.

Results indicate the percent change in salinity that can be detected given a range of sample sizes with α =0.05, β ≥0.80, α =1.37. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

ATCHAFALAYA BASIN POWER ANALYSIS

Salinity data were obtained from CRMS monitoring program and USGS Louisiana Water Science Center (Figure 141) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) for the Atchafalaya Basin. The data were collected at 15- or 30-minute intervals as well as one-hour intervals. Data collected at less than one-hour interval was then averaged to hourly data to combine with the other one-hour intervals to create an exemplary data set. In order to obtain an accurate representation of average monthly conditions, only sites that contained at least 20 days' worth of data were used in the analysis for that month. The CRMS program used a stratified random design with proportional allocation in the selection of sites (Stever et al., 2003b), but it is unknown how the original sampling locations were selected for the USGS sites and it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The natural-logarithmic transformation was used on monthly mean salinity in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed salinity with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

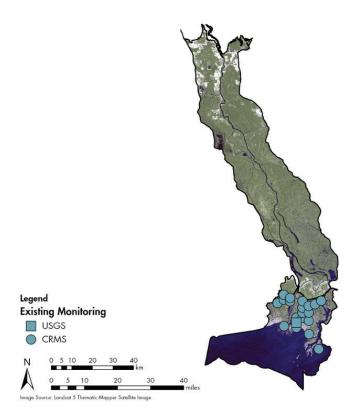


Figure 141. CRMS and USGS continuous salinity gauge site locations in Atchafalaya Basin.

ATCHAFALAYA BASIN RESULTS

CRMS sites occupying canals and bayous adjacent to wetlands are sufficient for detecting seasonal and annual changes within the canals. Thus, the remaining discussion pertains to the analysis of the open water bodies. The results for the open water body type indicate that all hypotheses could be tested with a moderate sample size (four to 13 sites; Table 58). It should be noted that Atchafalaya Basin experiences freshwater conditions because it is influenced by the Atchafalaya River and that the salinity variance was low compared to the other basins (Figure 142). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 58. Atchafalaya Basin salinity power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)"	# OF SITES
1: Differences among seasonal means	n/a	0.014	13
2: +1 years of data	6%	-0.01	4
3: +3 years of data	5%	-0.01	4
4: +5 years of data	1%	0.00	4

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

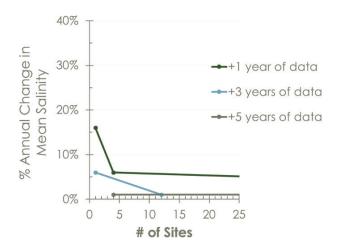


Figure 142. Atchafalaya Basin salinity power analysis results in open water bodies for hypotheses 2 through 4.

Results indicate the percent change in salinity that can be detected given a range of sample sizes with α =0.05, β ≥0.80, α =0.440. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

TERREBONNE BASIN POWER ANALYSIS

Salinity data were obtained from CRMS monitoring program and USGS Louisiana Water Science Center (Figure 143) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) for the Terrebonne Basin. The data were collected at 15- or 30-minute intervals as well as one-hour intervals. Data collected at less than one-hour interval was then averaged to hourly data to combine with the other onehour intervals to create an exemplary data set. In order to obtain an accurate representation of average monthly conditions, only sites that contained at least 20 days' worth of data were used in the analysis for that month. The CRMS program used a stratified random design with proportional allocation in the selection of sites (Stever et al., 2003b), but it is unknown how the original sampling locations were selected for the USGS sites and it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The natural-logarithmic transformation was used on monthly mean salinity in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed salinity with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

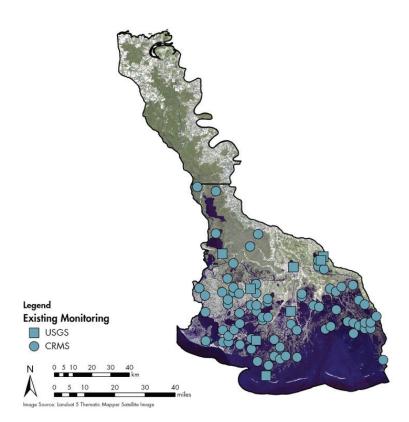


Figure 143. CRMS and USGS continuous salinity gauge site locations in Terrebonne Basin.

TERREBONNE BASIN RESULTS

CRMS sites occupying canals and bayous adjacent to wetlands are sufficient for detecting seasonal and annual changes within the canals. Thus, the remaining discussion pertains to the analysis of the open water bodies. The results for the open water body type indicate that all hypotheses could be tested with a moderate sample size (10-47 sites; Table 59). Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 144). However, a threshold point is evident for +3 and +5 years of data in Figure 143 where an increase in sample size beyond 10 results in a very small shift in the percentage of change. One year of data required about 47 sites to achieve a minimum gain in change. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 59. Terrebonne Basin salinity power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)"	# OF SITES
1: Differences among seasonal means	n/a	0.036	22
2: +1 years of data	16%	-0.04	47
3: +3 years of data	11%	-0.03	10
4: +5 years of data	6%	-0.01	10

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

Figure 144. Terrebonne Basin salinity power analysis results in open water bodies for hypotheses 2 through 4.

Results indicate the percent change in salinity that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.95. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including year 0 baseline). Percent change is based on log-transformed values.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

BARATARIA BASIN POWER ANALYSIS

Salinity data were obtained from CRMS monitoring program and USGS Louisiana Water Science Center (Figure 145) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). The data were collected at a minimum once every hour. In order to obtain an accurate representation of average monthly conditions, only sites that contained at least 20 days' worth of data were used in the analysis for that month. The CRMS program used a stratified random design with proportional allocation in the selection of sites (Steyer et al., 2003b), but it is unknown how the original sampling locations were selected for the USGS sites and it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The NHD was then used to classify the monitoring site locations into water body types. The NHD contains geographic information on the drainage network and classifies features such as rivers, streams, canals, lakes, ponds, coastline, dams, and stream gauges. The features were consolidated such that sites were classified as either open water (e.g., lakes, ponds) or channels (e.g., streams, canals). Given the disproportional number of canal sites (n = 89) versus the open water sites (n = 11), the analyses were run separately in order to determine whether there were sufficient sites for detecting changes within the open water bodies. The sites were further classified based on their position in the estuary (upper, mid-, and lower subbasins as indicated in Figure 144) and the season in which the data were collected. The natural-logarithmic transformation was used on monthly mean salinity in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed salinity with the interaction term season*subbasin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

- 1. at least one subbasin mean differs significantly from another subbasin mean;
- 2. at least one seasonal mean differs significantly from another seasonal mean;
- 3. the means in year 0 differ significantly from the means in year 1, averaged over all seasons and subbasins;
- the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons and subbasins;
- 5. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons and subbasins.

Hypotheses 3 through 5 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Further, hypotheses 2 through 5 were conducted for each subbasin independently in order to evaluate how sample size requirements may differ at a subbasin scale relative to the basin scale. Although standard deviation (σ) may differ when calculated at the basin versus subbasin scale, the basin scale estimate of standard deviation was used in the subbasin analysis. Alpha (a) and power were also held constant across analyses at the different spatial scales. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in α generally results in a need for larger sample sizes (Zar, 2010). As a result, the focus of the analysis was to evaluate how sample size requirements change in response to the means of each of the factors calculated at the different spatial scales and water body types.

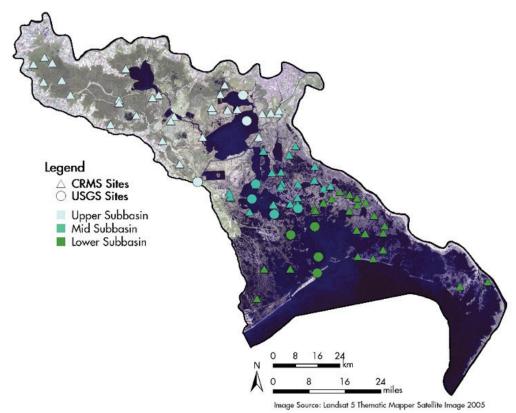


Figure 145. CRMS and USGS continuous salinity gauge site locations in Barataria Basin.

BARATARIA BASIN RESULTS

The results of the power analysis on the basinwide scale indicate the existing CRMS sites occupying canals and bayous adjacent to wetlands are sufficient for detecting seasonal and annual changes within the canals. Thus, the remaining discussion pertains to the analysis of the open water bodies. The results for the open water body type indicate that all hypotheses could be tested with a moderate sample size (15-22 sites; Table 60). Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 146). However, a threshold point is evident in Figure 146 where an increase in sample size beyond 20 results in a very small shift in the percentage of change. For example, from a sample size of 12 to 20, the difference in the y-axis is approximately 5%, while an increase from 20 to 40 sites still only results in a change of 5%. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 60. Barataria Basin salinity power analysis summary results for hypotheses 1 through 5.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)	# OF SITES
1: Differences among subbasin means	n/a	4.7	3
2: Differences among seasonal means	n/a	0.7	15
3: +1 years of data	20-15%	0.22-0.15	15-22
4: +3 years of data	6%	0.06	15-22
5: +5 years of data	6-5%	0.06-0.05	15-22

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

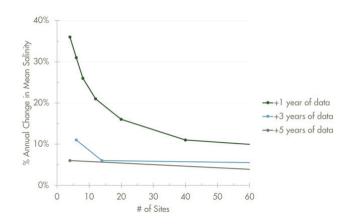


Figure 146. Barataria Basin salinity power analysis results in open water bodies for hypotheses 3 through 5.

Results indicate the percent change in mean salinity that can be detected given a range of sample sizes with α =0.05, β ≥0.80, α =1.07. Legend indicates the number of years of data collection postbaseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on natural logarithmic transformed values.

SUBBASIN

The results of the power analysis for open waterbodies on the subbasin scale exhibit higher sample size requirements for detecting linear trends in the upper and mid-subbasins than the lower subbasin (Table 61 and Figure 147). This results from the lower salinity values present in the upper and mid-subbasins such

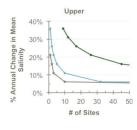
that when the percent change is converted to salinity units, the change is actually very small (< 0.1 ppt in the upper subbasin, < 1.0 ppt in the mid-subbasin, and 1-4ppt in the lower subbasin Figure 147). As a result, if subbasin scale questions are of interest and detecting small changes in the freshwater portions of the basins is of importance, then the allocation of sites across the subbasins should not be equal.

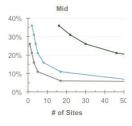
Table 61. Barataria subbasin salinity power analysis summary results for hypotheses 2 through 5.

UPPER SUBBASIN

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)"	# OF SITES
2: Differences among seasonal means	n/a	0.1	17
3: +1 years of data	25-20%	0.08-0.07	19-30
4: +3 years of data	9-6%	0.03-0.02	19-30
5: +5 years of data	6%	0.02	19-30

MID-SUBBASIN


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)"	# OF SITES
2: Differences among seasonal means	n/a	1.3	9
3: +1 years of data	30-25%	0.70-0.56	23-32
4: +3 years of data	11-8%	0.23-0.17	23-32
5: +5 years of data	6%	0.12	23-32


LOWER SUBBASIN

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)"	# OF SITES
2: Differences among seasonal means	n/a	2.7	18
3: +1 years of data	20-15%	3.7-2.6	10-16
4: +3 years of data	7-6%	1.1-0.9	10-16
5: +5 years of data	6-5%	0.9-0.8	10-16

i Detecting differences within seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

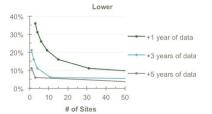


Figure 147. Barataria subbasin salinity power analysis in open water bodies for hypotheses 3 through 5.

Results indicate the percent change in mean salinity that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.07. Legend indicates the number of years of data collection postbaseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on square-roottransformed values.

PONTCHARTRAIN REGION POWER ANALYSIS

Salinity data were obtained from the CRMS monitoring program and USGS Louisiana Water Science Center (Figure 148) to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). The data were collected at a minimum once every hour. In order to obtain an accurate representation of average monthly conditions, only sites that contained at least 20 days' worth of data were used in the analysis for that month. The CRMS program used a stratified random design with proportional allocation in the selection of sites (Steyer et al., 2003b), but it is unknown how the original sampling locations were selected for the USGS sites and it was assumed for the analysis that some element of randomness was incorporated into the selection of sites. The sites were further classified based on their position in the estuary (upper and lower Pontchartrain and Breton; Figure 148) and the season in which the data were collected. The natural-logarithmic transformation was used on monthly mean salinity in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed salinity with the term season. The term was used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons and subbasins;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons and subbasins:
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons and subbasins.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were held constant across analyses.

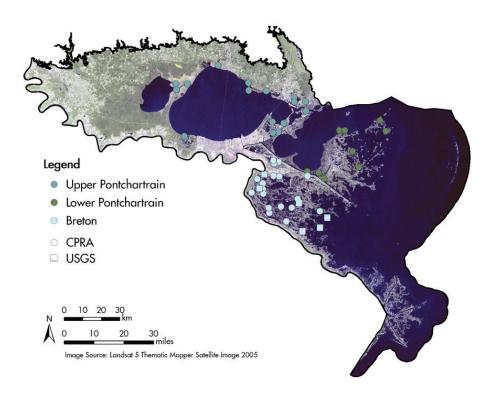


Figure 148. CRMS and USGS continuous salinity gauge site locations in the Pontchartrain Region.

PONTCHARTRAIN REGION RESULTS

The results of the power analysis in the Pontchartrain Region indicate detecting differences in seasonal salinity means within a year requires a sample size of 95, as a result of the relatively small changes that occur seasonally in these areas (Table 62). Similarly, the results indicate that for detecting a linear pattern in the annual means over time, averaged over all seasons, can be achieved with a sample size of 22 if collected for more than 3 years (Table 62 and Figure 149). Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 62. Pontchartrain Region salinity power analysis summary results for hypotheses 1 through 4.

AIN	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (μG L-1) ⁱⁱ	# OF SITES
\simeq	1: Differences among seasonal means	n/a	0.02	18
PPER HART	2: +1 years of data	20%	0.02	6
NTC	3: +3 years of data	6%	0.01	6
РО	4: +5 years of data	6%	0.01	6

Z	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)ii	# OF SITES
R RTR/	1: Differences among seasonal means	n/a	0.13	32
) W E	2: +1 years of data	20%	0.07	61
NTC	3: +3 years of data	20%	0.07	7
PO	4: +5 years of data	11%	0.04	7

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (ppt)"	# OF SITES
1: Differences among seasonal means	n/a	0.11	45
2: +1 years of data	20%	0.06	85
3: +3 years of data	20%	0.06	9
4: +5 years of data	11%	0.03	9

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

Figure 149. Pontchartrain Region salinity power analysis results for hypotheses 2 through 4.

+1 year of data

+3 years of data

Results indicate the percent change in mean salinity that can be detected given a range of sample sizes with α =0.05, β ≥0.80, (Upper) σ =1.1, (Lower) σ =1.5, (Breton) σ =2.4. Legend indicates the number of years of data collection postbaseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

Turbidity and Total Suspended Solids

COASTWIDE POWER ANALYSIS

At the time of this report, the LDEQ collected discrete water quality samples on a monthly basis to measure TSS (among other variables), although the monitoring in the Barataria Basin only occurs every four years. The Louisiana Department of Wildlife and Fisheries more recently has begun collecting turbidity data in conjunction with their fisheries independent monitoring program. The frequency of sampling is dependent upon the gear type used for the fisheries sampling and varies from weekly to monthly to annually at select locations (see Table 83 for LDWF site locations).

TSS concentrations were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). LDEQ AWQ measures water quality parameters discretely on a monthly basis for one year and repeats every four years (Figure 5). It was assumed for the analysis that some element of randomness was incorporated into the selection of their monitoring sites. The sites were then categorized into basins using the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) basin designation, as used by other CPRA monitoring programs. The natural-logarithmic transformation was used on monthly mean TSS in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to TSS concentrations with the interaction term season*basin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

1. at least one basin mean differs significantly from another basin mean;

- at least one seasonal mean differs significantly from another seasonal mean;
- 3. the means in year 0 differ significantly from the means in year 1, averaged over all seasons and basins;
- 4. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons and basins;
- the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons and basins.

Hypotheses 3 through 5 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Alpha (α) and power were also held constant across analyses at the different spatial scales. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in α generally results in a need for larger sample sizes (Zar, 2010). As a result, the focus of the analysis was to evaluate how sample size requirements change in response to the means of each of the factors calculated at the different spatial scales.

COASTWIDE RESULTS

The results of the power analysis indicate that all six hypotheses could be tested with a sample size between 10-77 sites (Table 63). Detecting differences among seasons or basins (hypotheses 1 and 2) requires a sample size on the lower end (10), because average differences among seasons or basins are large (10.58 mg L-1). Detecting changes over time requires different sample sizes depending on the level of change detectable and the time period for testing this change.

Table 63. Coastwide total suspended solids power analysis summary results for hypotheses 1 through 5.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among basin means	n/a	10.58	10
2: Differences among seasonal means	n/a	10.58	10
3: +1 year of data	6-11%	6.02-12.04	7-24
4: +3 years of data	1-6%	0.92-6.02	4-77
5: +5 years of data	1-6%	0.92-6.02	4-24

i Detecting differences within basins and seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for basins and seasons from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

CALCASIEU-SABINE BASIN POWER ANALYSIS

The power analysis was conducted on total suspended solids (TSS), under the assumption that the recommendations provided for the other water quality variables (DO, chlorophyll a, TN, TP) and the results of the TSS analysis can be used to guide the sample size estimate for discrete measurements of both TSS and turbidity. Concentrations of TSS were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) (Figure 105). It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. The natural-logarithmic transformation was used on monthly mean TSS in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed TSS with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;

- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

COASTWIDE RESULTS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual mean over years can be achieved with a moderate sample size (4 sites) while detecting changes within season requires a substantial increase in sample size to about 18 sites (Table 64). Detecting a linear pattern in the annual means over time is sensitive to the effect size applied (Figure 150). However, a threshold point is evident in Figure 150 where an increase in sample size beyond 4 results in a very small shift in the percentage of change. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 64. Calcasieu-Sabine total suspended solids power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among seasonal means	n/a	3.85	18
2: +1 years of data	21%	22.29	4
3: +3 years of data	6%	8.79	4
4: +5 years of data	10%	4.94	4

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

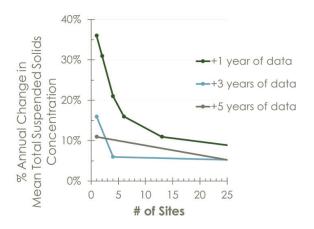


Figure 150. Calcasieu-Sabine TSS power analysis results for hypotheses 2 through 4.

Results indicate the percent change that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.071. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on natural logarithmic transformed values.

MERMENTAU BASIN POWER ANALYSIS

The power analysis was conducted on total suspended solids (TSS), under the assumption that the recommendations provided for the other water quality variables (DO, chlorophyll a, TN, TP) and the results of the TSS analysis can be used to guide the sample size estimate for discrete measurements of both TSS and turbidity. Concentrations of TSS were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) (Figure 107). It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. The natural-logarithmic transformation was used on monthly mean TSS in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed TSS with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;

- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

MERMENTAU BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual mean over years can be achieved with a moderate sample size (five to seven sites) while detecting changes within season requires a about nine sites (Table 65). Detecting a linear pattern in the annual means over time is sensitive to the effect size applied (Figure 151). However, a threshold point is evident in Figure 151 where an increase in sample size beyond nine results in a small shift in the percentage of change. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 65. Mermentau Basin total suspended solids power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	14.05	9
2: +1 years of data	16%	32.35	7
3: +3 years of data	6%	9.96	5
4: +5 years of data	6%	9.96	5

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

Figure 151. Mermentau TSS power analysis results for hypotheses 2 through 4.

Results indicate the percent change that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.36. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on natural logarithmic transformed values.

TECHE-VERMILION BASIN POWER ANALYSIS

The power analysis was conducted on total suspended solids (TSS), under the assumption that the recommendations provided for the other water quality variables (DO, chlorophyll a, TN, TP) and the results of the TSS analysis can be used to guide the sample size estimate for discrete measurements of both TSS and turbidity. Concentrations of TSS were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) (Figure 109). It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. The natural-logarithmic transformation was used on monthly mean TSS in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed TSS with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;

- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

TECHE-VERMILION BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual mean over years can be achieved with two to five sites while detecting changes within season requires about two sites (Table 66). Detecting a linear pattern in the annual means over time is sensitive to the effect size applied (Figure 152). However, a threshold point is evident in Figure 152 where an increase in sample size beyond five results in a small shift in the percentage of change.

Table 66. Teche-Vermilion Basin total suspended solids power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	21.43	2
2: +1 years of data	11%	28.90	5
3: +3 years of data	6%	14.20	2
4: +5 years of data	6%	14.20	2

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

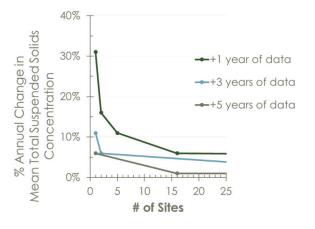


Figure 152. Teche-Vermilion TSS power analysis results for hypotheses 2 through 4.

Results indicate the percent change that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.819. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on natural logarithmic transformed values.

ATCHAFALAYA BASIN POWER ANALYSIS

The power analysis was conducted on total suspended solids (TSS), under the assumption that the recommendations provided for the other water quality variables (DO, chlorophyll a, TN, TP) and the results of the TSS analysis can be used to guide the sample size estimate for discrete measurements of both TSS and turbidity. Concentrations of TSS were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) (Figure 111). It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. The natural-logarithmic transformation was used on monthly mean TSS in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed TSS with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- 1. at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;

- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

ATCHAFALAYA BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual mean over years can be achieved with a moderate sample size (two to four sites) while detecting changes within season requires a about four sites (Table 67). Detecting a linear pattern in the annual means over time is sensitive to the effect size applied (Figure 153). However, a threshold point is evident in Figure 153 where an increase in sample size beyond four results in a small shift in the percentage of change. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 67. Atchafalaya Basin total suspended solids power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among seasonal means	n/a	33.44	2
2: +1 years of data	11%	96.51	4
3: +3 years of data	6%	16.13	2
4: +5 years of data	6%	16.13	2

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

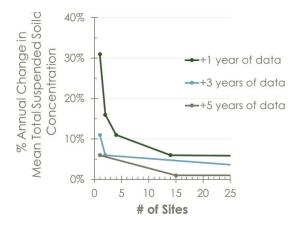


Figure 153. Atchafalaya TSS power analysis results for hypotheses 2 through 4.

Results indicate the percent change that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.801. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on natural logarithmic transformed values.

TERREBONNE BASIN POWER ANALYSIS

The power analysis was conducted on total suspended solids (TSS), under the assumption that the recommendations provided for the other water quality variables (DO, chlorophyll a, TN, TP) and the results of the TSS analysis can be used to guide the sample size estimate for discrete measurements of both TSS and turbidity. Concentrations of TSS were obtained from the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report) (Figure 113). It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. The natural-logarithmic transformation was used on monthly mean TSS in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting GLMs to the natural log transformed TSS with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis:

- at least one seasonal mean differs significantly from another seasonal mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;

- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were also held constant across analyses.

TERREBONNE BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual mean over years can be achieved with a moderate sample size (six to eight sites) while detecting changes within season requires a about 11 sites (Table 68). Detecting a linear pattern in the annual means over time is sensitive to the effect size applied (Figure 154). However, a threshold point is evident in Figure 154 where an increase in sample size beyond 11 results in a small shift in the percentage of change. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 68. Terrebonne Basin total suspended solids power analysis summary results for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among seasonal means	n/a	4.69	11
2: +1 years of data	16%	14.21	8
3: +3 years of data	6%	4.52	6
4: +5 years of data	6%	4.52	6

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

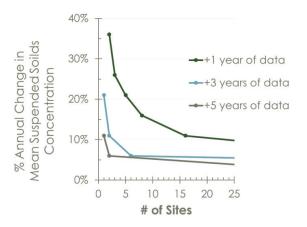


Figure 154. Terrebonne TSS power analysis results for hypotheses 2 through 4.

Results indicate the percent change that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =1.20. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on natural logarithmic transformed values.

BARATARIA BASIN POWER ANALYSIS

The power analysis was conducted on TSS, under the assumption that the recommendations provided for the other water quality variables (DO, chlorophyll a, TN, TP) and the results of the TSS analysis can be used to guide the sample size estimate for discrete measurements of turbidity. Concentrations of TSS were obtained from both the LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). As part of the Davis Pond monitoring program, water samples were obtained on a monthly basis throughout Barataria Basin from 1997 to 2009 and LDEQ collected TSS data during this time, as well (Figure 115). It is unknown how the original sampling locations were selected, but it was assumed for the analysis that some element of randomness was incorporated in the selection of sites. The NHD was then used to classify the monitoring site locations into waterbody types. The NHD contains geographic information on the drainage network and classifies features such as rivers, streams, canals, lakes, ponds, coastline, dams, and stream gauges. The features were consolidated such that sites were classified as either open water (e.g., lakes, ponds) or channels (e.g., streams, canals). The sites were further classified based on their position in the estuary (upper, middle, and lower subbasins as indicated in Figure 115) and the season in which data were collected. The natural logarithmic transformation was used in order to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the log-transformed TSS concentrations with the interaction term season*water body type*subbasin. These terms were used to reduce the residual mean square error and provide an estimate of the mean for each combination of factors.

The following hypotheses were then tested for the power analysis:

1. at least one subbasin mean differs significantly from another subbasin mean;

- at least one seasonal mean differs significantly from another seasonal mean;
- 3. water body type means are significantly different from one another;
- 4. the means in year 0 differ significantly from the means in year 1, averaged over all water body types, seasons, and subbasins;
- 5. the means in years 0 through year 2 are linearly related and have a slope significantly different from zero, averaged over all water body types, seasons, and subbasins;
- 6. the means in years 0 through year 4 are linearly related and have a slope significantly different from zero, averaged over all water body types, seasons, and subbasins.

Hypotheses 4 through 6 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. Further, hypotheses 2 through 6 were conducted for each subbasin independently in order to evaluate how sample size requirements may differ at a subbasin scale relative to the basin scale. Although standard deviation may differ when calculated at the basin versus subbasin scale, the basin scale estimate of standard deviation was used in the subbasin analysis. Alpha (\alpha) and power were also held constant across analyses. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in α generally results in a need for larger sample sizes (Zar, 2010). As a result, the only information not held constant between the basin and subbasin scale analyses was the estimated means for each of the factors (season, water body type, subbasin). This allowed for exploring the sensitivity of the analysis to the means calculated at the different spatial scales.

BARATARIA BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual mean over years can be achieved with a moderate sample size (3-8 sites) while detecting changes within any of the factors (i.e., subbasins, seasons, water body types) requires a substantial increase in sample size (Table 69). Detecting a linear pattern in the annual means over time, averaged over all factors, is sensitive to the effect size applied (Figure 155). However, a threshold point is evident in Figure 155 where an increase in sample size beyond 8 results in a very small shift in the percentage of change. For example, from a sample size of 2 to 8, the difference in the y-axis is approximately 10%, while an increase from 8 to 16 sites only results in a change of less than 5%. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 69. Barataria Basin total suspended solids power analysis summary results for hypotheses 1 through 6.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
1: Differences among subbasin means	n/a	8.08	22
2: Differences among seasonal means	n/a	5.32	52
3: Differences among water body type means	n/a	0.50	> 1000
4: +1 years of data	11-20%	14.90-32.10	3-8
5: +3 years of data	6%	7.42	3-8
6: +5 years of data	5-6%	6.07-7.42	3-8

i Detecting differences within subbasins, seasons, and waterbody types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from y 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

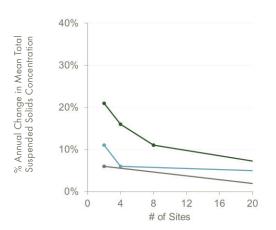


Figure 155. Barataria Basin TSS power analysis results for hypotheses 4 through 6.

Results indicate the percent change that can be detected given a range of sample sizes with α=0.05, β≥0.80, σ=0.86.

Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on natural logarithmic transformed values.

SUBBASIN RESULTS

The results of the power analysis on the subbasin scale exhibit comparable sample size requirements for each hypothesis for an individual subbasin as they do for the basin as a whole (Table 70). The reason for the consistency in the estimates stems from

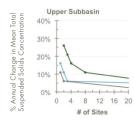
the similarities in the means among subbasins such that the basinwide mean is representative of the mean calculated on a subbasin scale (Figure 156). As a result, if subbasin scale questions are of interest, the total sample size for the basin would be approximately three times larger than if the question of interest is on a basinwide scale.

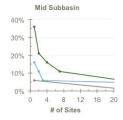
Table 70. Barataria subbasin total suspended solids power analysis summary results for hypotheses 2 through 6.

		3
4		
ś		
ć		
		1
ı		
6		
)

_
_
ഗ
- 2
⋖
_
\mathbf{a}
-
\Box
\supseteq
SU
- 50

LOWER SUBBASIN


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
2: Differences among seasonal means	n/a	9.66	12
3: Differences among water body type means	n/a	7.42	24
4: +1 years of data	11-20%	9.64-22.95	4-8
5: +3 years of data	6%	9.64-22.95	4-8
6: +5 years of data	5-6%	9.64-22.95	4-8


HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
2: Differences among seasonal means	n/a	9.88	20
3: Differences among water body type means	n/a	4.27	130
4: +1 years of data	11-20%	14.89-36.12	3-7
5: +3 years of data	6%	14.89-36.12	3-7
6: +5 years of data	5-6%	14.89-36.12	3-7

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
2: Differences among seasonal means	n/a	13.89	12
3: Differences among water body type means	n/a	13.84	15
4: +1 years of data	11-20%	16.33-39.78	3-7
5: +3 years of data	6%	16.33-39.78	3-7
6: +5 years of data	5-6%	16.33-39.78	3-7

i Detecting differences within subbasins, seasons, and water body types was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among means for subbasins, seasons, and water body types from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

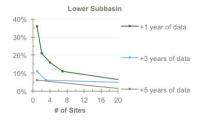


Figure 156. Barataria subbasin TSS power analysis results for hypotheses 4 through 6.

Results indicate the percent change that can be detected given a range of sample sizes with α =0.05, β ≥0.80, σ =0.86. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0). Percent change is based on square-root-transformed values.

PONTCHARTRAIN REGION POWER ANALYSIS

TSS concentrations were obtained from Lundberg et al. (2014) and LDEQ AWQ program to create the exemplary dataset (as defined in the "Natural System Sampling Design" in the main report). The Lundberg et al. (2014) data collection effort occurred in Breton while the LDEQ data collection occurred in both the upper and lower portions of the Pontchartrain Region, including some overlap in Breton Basin (Figure 103). The datasets were analyzed separately and the LDEQ data were further divided into upper and lower Pontchartrain given the relatively large size of the region and the different marine and freshwater influences each of these areas experience. The natural logarithmic transformation was used in order to approximate normality and satisfy the assumptions of the GLM, except for TP in Breton Basin where no transformation was needed. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the log-transformed concentrations, where applicable, with the term season. This term was used to reduce the residual mean square error and provide an estimate of the mean for each factor.

The following hypotheses were then tested for the power analysis for each subbasin (Breton and upper and lower Pontchartrain):

1. at least one seasonal mean differs significantly from another seasonal mean;

BRETON

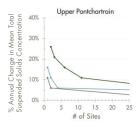
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all seasons;
- 3. the means in years 0 through 2 are linearly related and have a slope significantly different from zero, averaged over all seasons;
- 4. the means in years 0 through 4 are linearly related and have a slope significantly different from zero, averaged over all seasons.

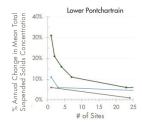
Hypotheses 2 through 4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +3, and +5 years of data, respectively. It is already well established in the statistical literature that an increase in standard deviation, an increase in power, or a decrease in alpha (α) generally results in a need for larger sample sizes (Zar, 2010). Alpha and power were held constant across analyses.

PONTCHARTRAIN REGION RESULTS

The results of the power analysis in the Pontchartrain Region indicate detecting differences in seasonal TSS means within a year requires a sample size of 15 in the Breton and lower Pontchartrain areas combined, but an additional 32 in upper Pontchartrain because of the smaller seasonal differences (Table 71). Detecting linear trends in the annual mean over years can be achieved with a sample size of (10) for the entire region (Table 71 and Figure 157).

Table 71. Pontchartrain Region total suspended solids power analysis summary results for hypotheses 1 through 4.


Z	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
R TRA	1: Differences among seasonal means	n/a	2.71	32
PPER HART	2: +1 years of data	20%	8.95	4
NTC	3: +3 years of data	6%	2.22	4
РО	4: +5 years of data	6%	2.22	4


Z	HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1)ii	# OF SITES
R RTR/	1: Differences among seasonal means	n/a	12.86	6
LOWE	2: +1 years of data	20%	22.08	3
NTC	3: +3 years of data	6%	5.21	3
РО	4: +5 years of data	6%	5.21	3

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (mg L-1) ii	# OF SITES
1: Differences among seasonal means	n/a	11.10	9
2: +1 years of data	20%	24.88	3
3: +3 years of data	6%	5.83	3
4: +5 years of data	6%	5.83	3

i Detecting differences among seasons was based on the changes that have historically occurred within those categories. The effect size was not manually adjusted as was done with the trend analysis.

ii The average change was calculated as the average difference among seasonal means from the exemplary dataset and as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

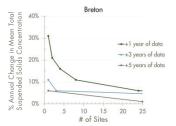


Figure 157. Pontchartrain Region TSS power analysis results for hypotheses 4 through 6.

Results indicate the percent change in mean TKN or TN concentrations that can be detected given a range of sample sizes with α =0.05, β ≥0.80, (Upper) σ =0.814, (Lower) σ =0.80, (Breton) σ =0.835. Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +3, and +5 years of data equate to 2, 4, and 6 years of data in total (including baseline, year 0).

BIOTIC INTEGRITY

Nekton Community Composition and Oyster Biomass

OVERVIEW

Collection of fish and shellfish using standardized gear can be used as an indicator of relative abundance and can be used to develop diversity indices and to quantify potential consumer resource availability within estuarine habitats. Standardized gear also targets specific size classes, which provides an opportunity to examine ecological differences among life stages of a given species (Livingston, 1988). The LDWF Fisheries Independent Monitoring program employs a variety of gear types, including trawls, seines, and gillnets, intended to target particular groups of fish and shellfish, although all species caught are recorded in the database. The program also samples oysters within a square meter plot. The meter square samples provide a measure of oyster density collected annually during the summer months at several sites along the public oyster grounds within the Barataria Basin. Given the low sampling frequency and small spatial scale, it was determined that the data may not be representative of the true oyster population in the basin. As a result, the power analysis was only conducted on marine species caught with trawls, seines, and gillnets, and freshwater species caught using boat electrofishing, as described below.

COASTWIDE POWER ANALYSIS

The coastwide analysis was conducted on catch per unit effort (CPUE) of different fish and shellfish species for the 16-foot trawl, 50-foot seine, 750-foot experimental gillnet, and electrofishing (Figure 6). CPUE is a measure of relative abundance and, due to the variable catch efficiency of different gear types, should be estimated separately for each gear type. The 16-foot trawls are sampled bi-weekly during November through February and weekly from March through October at fixed sites to provide abundance indices and size distributions for penaeid shrimps, crabs, and finfish (bottom fish) in the larger inshore bays and Louisiana's territorial waters (LDWF, 2002). Preliminary examination of the data for the period 2003–2013 revealed the 16-foot trawls were efficient at catching blue crab, white

shrimp, brown shrimp, grass shrimp, Gulf menhaden, and bay anchovy. With the exception of grass shrimp, species represent key economic fisheries. Grass shrimp was included because it is a marsh resident species and tracking changes in both transients and residents is of particular importance in response to largescale environmental perturbations and management actions. The 50-foot seines have historically been sampled once or twice per month at fixed sites within each coastal basin by LDWF to provide abundance indices and size distributions of the small fishes and invertebrates using the shallow shoreline habitats of the estuaries (LDWF, 2002). Preliminary examination of the data for the period 2003-2013 revealed the 50-foot seines were efficient at catching blue crab, white shrimp, brown shrimp, grass shrimp, sheepshead minnow, Gulf menhaden, and bay anchovy. Both grass shrimp and sheepshead minnow are marsh resident species. The 750- foot experimental gill nets have historically been sampled once per month at fixed sites from October through March and twice per month from April through September to provide abundance indices and sizes for adult finfish such as spotted seatrout, Gulf menhaden, and red drum (LDWF, 2002). Preliminary examination of the data for the period 2003-2013 revealed the 750-foot gill nets were efficient at catching Gulf menhaden and spotted seatrout. Although spotted seatrout is not a marsh resident species, females show strong fidelity for natal estuaries, which may limit their ability to respond to large-scale changes in the system (Callihan et al., 2013). Lastly, electrofishing is conducted in 15-minute time steps up to four times a year in freshwater rivers, lakes, and bayous. It is primarily used for sampling largemouth bass populations. As a result, the analysis was conducted strictly on largemouth bass. The natural-logarithmic transformation was used in all analyses to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the CPUE of each of the species for each gear type with month as a covariate (Table 72). Given the large number of species and gear types analyzed, the analysis was focused on a single hypothesis for each species.

The following hypothesis was tested for the power analysis:

1. the means in year 0 differ significantly from the means in year 1.

The hypothesis was conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report.

Table 72. Standard deviations for nekton by gear type used in coastwide power analysis.

SPECIES	GEAR TYPE	STANDARD DEVIATION (σ)
Blue crab	Trawls	1.36
White shrimp	Trawls	1.41
Gulf menhaden	Trawls	0.97
Grass shrimp	Trawls	1.77
Brown shrimp	Trawls	2.06
Bay anchovy	Trawls	1.83
White shrimp	Seine	1.73
Bay anchovy	Seine	1.75
Brown shrimp	Seine	1.98
Gulf menhaden	Seine	1.16
Grass shrimp	Seine	2.62
Blue crab	Seine	0.91
Gulf menhaden	Gill net	2.27
Spotted seatrout	Gill net	1.17
Largemouth bass	Electrofishing	1.02

COASTWIDE RESULTS

The 750-foot gill net is effective at detecting between 25-35% change in mean annual CPUE of adult Gulf menhaden and adult spotted seatrout with a sample size of 52, which represents the current number of gill net sites that are sampled on an annual basis coastwide by LDWF. There are a total of 107 sites from which the 52 are randomly selected in a given year. If all 107 o f LDWF's gillnet sites were sampled in a year, then the ability to detect change would only improve to 20-25%. As a result, increasing the sample size does not result in substantial benefits and is thus not recommended at this time. The 16-foot trawl is most effective at the current sample size (92 sites) for detecting changes between 10-20% for juvenile blue crab, juvenile brown shrimp, and grass shrimp, and between 5-10% for juvenile and adult bay anchovy and juvenile Gulf menhaden. The 50foot seine was also effective at detecting between 10-15% for juvenile white and brown shrimp, juvenile blue crab, and grass shrimp, and 5-10% change for juvenile bay anchovy and juvenile Gulf menhaden based on the current sample size of 102. The electrofishing gear is capable of detecting trends in largemouth bass as small as 6% based on a sample size of 86 sites coastwide. As a result, the existing sample sizes are all sufficient for detecting trends on the coastwide scale, although there is variation between gear types and species in the change that it is possible to detect.

BARATARIA BASIN POWER ANALYSIS

The Barataria Basin analysis was conducted on CPUE of different fish and shellfish species for the 16-foot trawl, 50-foot seine, 750-foot experimental gillnet, and electrofishing (Figure 158). Description of gears and species can be found in the coastwide power analysis section above. The natural-logarithmic transformation was used in all analyses to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the CPUE of each of the species for each gear type with month and subbasin (mid- and lower, only) as a covariate (Table 73). Given the large number of species and gear types analyzed, the analysis was focused on a single hypothesis for each species.

The following hypothesis was tested for the power analysis:

1. the means in year 0 differ significantly from the means in year 1.

The hypothesis was conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report.

Table 73. Standard deviations for nekton by gear type used in Barataria Basin power analysis.

SPECIES	GEAR TYPE	STANDARD DEVIATION (σ)
Blue crab	Trawls	0.84
White shrimp	Trawls	1.27
Gulf menhaden	Trawls	0.86
Grass shrimp	Trawls	0.76
Brown shrimp	Trawls	1.23
Bay anchovy	Trawls	1.71
White shrimp	Seine	0.71
Bay anchovy	Seine	1.81
Brown shrimp	Seine	0.88
Gulf menhaden	Seine	1.26
Grass shrimp	Seine	1.50
Sheepshead minnow	Seine	0.49
Blue crab	Seine	0.74
Gulf menhaden	Gill net	1.13
Spotted seatrout	Gill net	0.85
Largemouth bass	Electrofishing	1.08

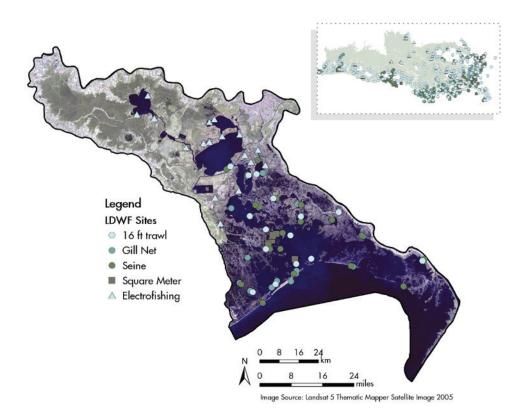


Figure 158. Existing LDWF nekton sampling sites in the Barataria subbasins.

BARATARIA BASIN RESULTS

Detecting a linear change in the annual means over time depends on the effect size and gear type. The 750-foot gill net is effective at detecting 25% changes in mean annual CPUE of adult Gulf menhaden and adult spotted seatrout with a sample size of 25, which represents the current number of gill net sites sampled by LDWF (Figure 159). In order to detect a 20% change in either species, the sample size would need to increase from 25 to 40 sites. The 16-foot trawl is most effective at the current sample size (15 sites) for detecting changes in juveniles and adult bay anchovies, and juvenile blue crab and juvenile brown and white shrimp, but least effective for grass shrimp and juvenile Gulf

40%

40%

Gulf menhaden (adults)

→ spotted seatrout (adults)

→ spotted seatrout (adults)

0%

0 20 40 60 80 100

of Sites

Figure 159. Barataria Basin power analysis results for the 750-foot gill net. Results indicate the percent change that can be detected in CPUE given a range of sample sizes (α =0.1, β >0.80, α =see Table 74).

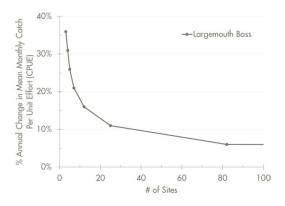


Figure 161. Barataria Basin power analysis results for electrofishing. Results indicate the percent change that can be detected in CPUE given a range of sample sizes (α =0.1, β ≥0.80, σ =see Table 74).

menhaden (Figure 160). Increasing the 16-foot trawl sample size from 15 to 20 would allow for detecting 20% annual changes in juvenile blue crab and juvenile brown and white shrimp. The electrofishing gear at the current sample size of 16 sites is capable of detecting a 15% change in largemouth bass from one year to the next (Figure 161). The 50-foot seine is the least effective out of all the gear types tested at detecting trends on the basinwide scale. At the current sample size of 20, a 25% change can be detected in juvenile bay anchovy and grass shrimp, while only 30% (and higher) for all other species tested (Figure 162). The inefficiency of seines in capturing small nekton has previously been reported, resulting in low and variable catch efficiencies (Rozas & Minello, 1997).

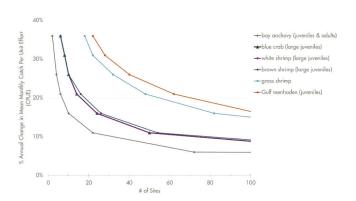


Figure 160. Barataria Basin power analysis results for the 16-foot trawl. Results indicate the percent change that can be detected in CPUE given a range of sample sizes (α =0.1, β >0.80, α =see Table 74). The blue crab line (green with triangle symbol) overlaps the white shrimp line (pink with circle symbol) on the graph.

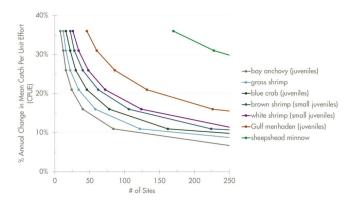


Figure 162. Barataria Basin power analysis results for the 50-foot seine. Results indicate the percent change that can be detected in CPUE given a range of sample sizes (α =0.1, β ≥0.80, σ =see Table 74).

PONTCHARTRAIN REGION POWER ANALYSIS

The Pontchartrain Region analysis was conducted on CPUE of different fish and shellfish species for the 16-foot trawl, 50-foot seine, 750-foot experimental gillnet, and electrofishing (Figure 163). Description of gears and species can be found in the coastwide power analysis section above. The natural-logarithmic transformation was used in all analyses to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the CPUE of each of the species for each gear type with month and subbasin (mid- and lower, only) as a covariate (Table 74). Given the large number of species and gear types analyzed, the analysis was focused on a single hypothesis for each species.

The following hypothesis was tested for the power analysis:

1. the means in year 0 differ significantly from the means in year 1.

The hypothesis was conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report.

Table 74. Standard deviations for nekton by gear type used in Pontchartrain Region power analysis.

SPECIES	GEAR TYPE	STANDARD DEVIATION (σ)
Blue crab	Trawls	0.67
White shrimp	Trawls	1.26
Gulf menhaden	Trawls	0.93
Grass shrimp	Trawls	0.58
Brown shrimp	Trawls	1.05
Bay anchovy	Trawls	1.81
White shrimp	Seine	0.80
Bay anchovy	Seine	1.84
Brown shrimp	Seine	0.93
Gulf menhaden	Seine	1.43
Grass shrimp	Seine	1.67
Blue crab	Seine	0.90
Gulf menhaden	Gill net	1.18
Spotted seatrout	Gill net	0.80
Largemouth bass	Electrofishing	1.15

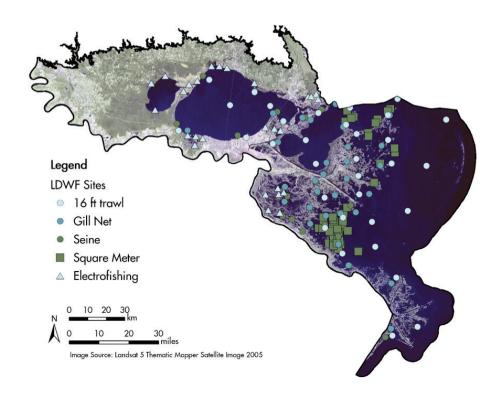


Figure 163. Existing LDWF nekton sampling sites in the Pontchartrain Region.

PONTCHARTRAIN REGION RESULTS

Detecting a linear change in the annual means over time depends on the effect size and gear type. The 750-foot gill net is effective at detecting 24% and 33% changes in mean annual CPUE of adult spotted seatrout and adult Gulf menhaden with a sample size of 31, which represents the current number of gill net sites sampled by LDWF (Figure 164). In order to detect a 20% change in either species, the sample size would need to increase to at least 45 sites. The 16-foot trawl is most effective at the current sample size (31 sites) for detecting at least a 20% change in juveniles and adult bay anchovies, and juvenile blue crab and juvenile

brown and white shrimp (Figure 165). The gear is less effective at detecting changes in juvenile Gulf menhaden and grass shrimp. The electrofishing gear at the current sample size of 27 sites is capable of detecting a 10% change in largemouth bass from one year to the next (Figure 166). The 50-foot seine shows the highest variability of all the gear types tested at detecting trends on the basinwide scale. At the current sample size of 29, a 15% change can be detected in juvenile bay anchovy, 25% change can be detected in juvenile blue crab and grass shrimp, and 30% (and higher) for juvenile brown and white shrimp and Gulf menhaden (Figure 167).

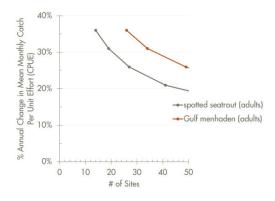


Figure 164. Pontchartrain Region power analysis results for the 750-foot gill net.

Results indicate the percent change that can be detected in CPUE given a range of sample sizes (α =0.1, β ≥0.80, σ =see Table 75).

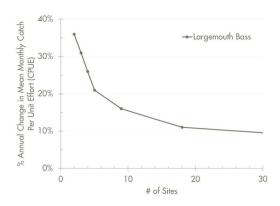


Figure 166. Pontchartrain Region power analysis results for electrofishing.

Results indicate the percent change that can be detected in CPUE given a range of sample sizes (α =0.1, β ≥0.80, σ =see Table 75).

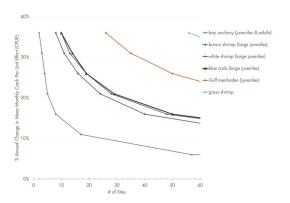


Figure 165. Pontchartrain Region power analysis results for the 16-foot trawl.

Results indicate the percent change that can be detected in CPUE given a range of sample sizes (α =0.1, β ≥0.80, σ =see Table 75). The blue crab line (green with triangle symbol) overlaps the white shrimp line (pink with circle symbol) on the graph.

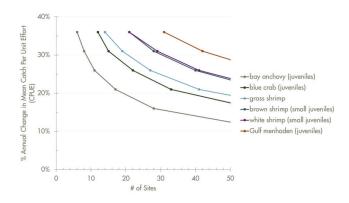


Figure 167. Pontchartrain Region power analysis results for the 50-foot seine.

Results indicate the percent change that can be detected in CPUE given a range of sample sizes (α =0.1, β ≥0.80, σ =see Table 75).

Wetland Biomass and Soil Condition

COASTWIDE POWER ANALYSIS

The analysis was conducted using aboveground biomass and soil bulk density obtained from a research study in herbaceous wetlands (Piazza et al., 2011). Similar results were found for both aboveground biomass and soil bulk density, so the remaining discussion is limited to aboveground biomass for simplicity. The data were collected four times a year from 2006- 2007 and sites were selected to overlap with the CRMS program. The square-root transformation was used to approximate normality and satisfy the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the transformed means with season and wetland type (i.e., fresh, intermediate, brackish, and saline marsh as defined in the study) as covariates. The low sample sizes within each basin prevented use of basin as a covariate.

The following hypotheses were then tested for the power analysis:

- 1. at least one wetland type mean differs significantly from another wetland type mean;
- 2. the means in year 0 differ significantly from the means in year 1, averaged over all basins.

- the means in years 0 through 5 are linearly related and have a slope significantly different from zero, averaged over all basins;
- 4. the means in year 0 differ significantly from the means in year 4, averaged over all basins.

Hypotheses 2-4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +5 years of data, and once every 5 years, respectively. Further, hypotheses 1-4 were conducted at the coastwide and basinwide scale in order to evaluate how sample size requirements may differ over spatial scales.

COASTWIDE RESULTS

The results of the power analysis on the coastwide scale indicate that detecting linear trends in the annual mean from one year to the next requires a moderate sample size, however, a longer time step enables much finer changes to be detected (Table 75). Detecting a linear pattern in the annual means over time, averaged over all factors, is also sensitive to the effect size applied (Figure 168). However, a threshold point is evident in Figure 168 where an increase in sample size beyond 112 results in a very small shift in the percentage of change. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 75. Barataria Basin total suspended solids power analysis summary results for hypotheses 1 through 6.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (g m ⁻²)i	# OF SITES
1: Differences among wetland types	n/a	272.9	56
2: +1 years of data	16-11%	475.8-319.5	56-112
3: +5 years of data	6%	170.2	56-112
4: Once every 5 years	6-5%	170.2-141.1	56-112
5: +3 years of data	6%	7.42	3-8
6: +5 years of data	5-6%	6.07-7.42	3-8

i The average change in aboveground biomass $(g m^2)$ was calculated as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

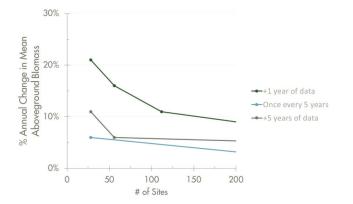


Figure 168. Coastwide aboveground biomass power analysis results.

Results indicate the percent change in above ground biomass that can be detected given a range of sample sizes (α =0.05, β ≥0.80, σ =9.94). Legend indicates the number of years of data collection postbaseline (year 0). Thus, +1, +5, and once every 5 years of data equate to 2, 6, and 2 years of data in total (including baseline), respectively.

BARATARIA BASIN POWER ANALYSIS

The analysis was conducted using aboveground biomass and soil bulk density obtained from a research study in herbaceous wetlands (Piazza et al., 2011), as previously described in the Coastwide Power Analysis section. For the basin scale analysis, data from both Barataria and Breton basins were used so that all herbaceous wetland types would be present in the analysis. This assumes the data collected in Breton Basin are representative of soil conditions in Barataria Basin and the sample size estimates from the analysis can be applied to Barataria Basin or Breton Basin. Although season was included as a covariate in the model to reduce the residual variance, it was not included in the power analysis because measurements are not expected to vary seasonally and would only be collected once in a given year for SWAMP.

BARATARIA BASIN RESULTS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual mean from one year to the next requires a substantial sample size, however, a longer time step enables much finer changes to be detected (Table 76). Detecting a linear pattern in the annual means over time, averaged over all factors, is also sensitive to the effect size applied (Figure 169). However, a threshold point is evident in Figure 169 where an increase in sample size beyond 63 results in a very small shift in the percentage of change. Further, the graphs indicate that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

PONTCHARTRAIN REGION POWER ANALYSIS

The analysis was conducted using aboveground biomass and soil bulk density obtained from a research study in herbaceous wetlands (Piazza et al., 2011), as previously described in the Coastwide and Barataria Power Analysis sections. For the Pontchartrain Region analysis, data from both Barataria Basin and Pontchartrain Region were used so that all herbaceous wetland types would be present in the analysis. This assumes the data collected in Barataria Basin are representative of soil conditions in Pontchartrain Region and the sample size estimates from the analysis can be applied to Barataria Basin or Pontchartrain Region. Although season was included as a covariate in the model to reduce the residual variance, it was not included in the power analysis because measurements are not expected to vary seasonally and would only be collected once in a given year for SWAMP. The analysis can be fine-tuned to the region specifically once data are collected more comprehensively in both Barataria Basin and Pontchartrain Region.

PONTCHARTRAIN REGION RESULTS

As previously in the Pontchartrain Region Power Analysis section, the results of the Barataria analysis should be applied to the Pontchartrain Region. The reader is referred to the Barataria Basin Results section above for further details.

Table 76. Barataria Basin herbaceous wetland aboveground biomass summary results of the power analysis for hypotheses 1 through 4.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (g m-2)i	# OF SITES
1: Differences among wetland types	n/a	406.9	63
2: +1 years of data	21-36%	521.3-954.3	21-45
3: +5 years of data	11%	260.7	21-45
4: Once every 5 years	6-11%	138.8-260.7	21-45

i The average change in aboveground biomass $(g m^2)$ was calculated as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

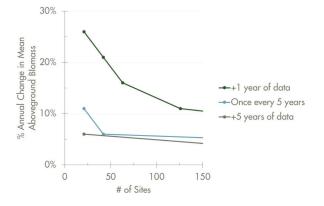


Figure 169. Barataria Basin aboveground biomass power analysis results.

Results indicate the percent change in above ground biomass that can be detected given a range of sample sizes (α =0.05, β ≥0.80, α =9.65. Legend indicates the number of years of data collection postbaseline (year 0). Thus, +1, +5, and once every 5 years of data equate to 2, 6, and 2 years of data in total (including baseline), respectively.

Wetland Community Composition

COASTWIDE POWER ANALYSIS

Monitoring of herbaceous and forested wetlands is currently conducted through the CRMS program and includes measures of species composition, overstory and understory diameter at breast height (DBH), understory plant height, and canopy cover. A continuous salinity and water level recorder, rod surface elevation tables, and vertical accretion plots are also stationed at each site. The power analysis was conducted using the Floristic Quality Index (FQI) calculated for each herbaceous wetland site and the Forested FQI (FFQI) for forested wetlands. FQI is used as a measure of wetland condition in the CRMS program and is calculated from species percent cover (both native and non-native species) and a coefficient of conservatism score which ranks species based on their relative tolerance to disturbance and fidelity to specific environmental conditions (Cretini et al., 2012). The FQI and FFQI was calculated annually from 2007-2013. The CRMS program used a stratified random design with proportional allocation in the selection of sites (Figure 171; Steyer et al., 2003b). FQI scores approximated normality and satisfied the assumptions of the GLM. Estimated means and variance were generated for the exemplary dataset by fitting a GLM to the FQI scores with basins as a covariate.

The following hypotheses were then tested for the power analysis:

1. at least one basin mean differs significantly from another basin mean;

- 2. the means in year 0 differ significantly from the means in year 1, averaged over all basins.
- 3. the means in years 0 through 5 are linearly related and have a slope significantly different from zero, averaged over all basins;
- 4. the means in year 0 differ significantly from the means in year 4, averaged over all basins.

Hypotheses 2-4 were conducted for different effect sizes (e.g., 1-36%) as described in the "Natural System Sampling Design" in the main report and are referenced shorthand in the tables and figures as +1, +5 years of data, and once every 5 years, respectively.

COASTWIDE RESULTS

FORESTED WETLANDS

The results of the power analysis on the coastwide scale indicate that detecting linear trends in the annual mean from one year to the next requires a sample size of greater than 100, however, a longer time step enables much finer changes to be detected at half the sample size (Table 77). Detecting a linear pattern in the annual means over time, averaged over all factors, is also sensitive to the effect size applied (Figure 170). However, a threshold point is evident in Figure 170 where an increase in sample size beyond 35 results in a very small shift in the percentage of change for the once every 5 years sampling regime. For example, from a sample size of 20 to 35, the difference in the y-axis is 5%, while a change from 35 to 110 results in only a change of 5%. Also evident in the graphs is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 77. Forested wetland FFQI summary results of the power analysis for the hypotheses on the coastwide scale.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (FFQI)	# OF SITES
1: Differences among basins	n/a	8.9	25
2: +1 years of data	25-20%	7.9-9.9	100-160
3: +5 years of data	6%	2.4	50
4: Once every 5 years	10%	3.9	55

i The average change in FFQI units was calculated as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

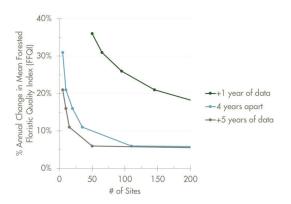


Figure 170. Forested wetland FFQI coastwide power analysis results.

Results indicate the percent change that can be detected given a range of sample sizes (α =0.05, β ≥0.80, σ =24.77). Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +5, and 4 years apart of data equate to 2, 6, and 2 years of data in total (including baseline), respectively.

HERBACEOUS WETLANDS

The results of the power analysis on the coastwide scale indicate that detecting linear trends in the annual mean from one year to the next requires a substantial sample size, however, a longer time step enables much finer changes to be detected (Table 78 and Figure 171). Detecting a linear pattern in the annual means over time, averaged over all factors, is also sensitive to the effect size applied. However, a threshold point is evident where an

increase in sample size beyond 120 results in a very small shift in the percentage of change. For example, when increasing the sample size from 60 to 120, the difference in the y-axis is 5%, while increasing the sample size from 120 to 330 still results in a change of 5%, despite the larger increase in sample size (Figure 171). Also evident in the graph is that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 78. Coastwide herbaceous wetland summary results of the power analysis for hypotheses 1 through 5.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (FQI)	# OF SITES
1: Differences among basins	n/a	12.6	90
2: Differences among wetland types	n/a	16.0	60
3: +1 years of data	15-10%	5.6-8.4	160-75
4: +5 years of data	6-5%	3.4-2.8	160-75
5: Once every 5 years	6-4%	3.4-2.2	160-75

i The average change in FQI units was calculated as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

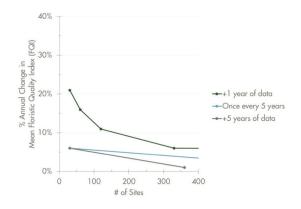


Figure 171. Coastwide aboveground biomass power analysis results.

Results indicate the percent change that can be detected given a range of sample sizes (α =0.05, β ≥0.80, σ =15.4). Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +5, and once every 5 years of data equate to 2, 6, and 2 years of data in total (including baseline), respectively.

BARATARIA BASIN POWER ANALYSIS

The power analysis was conducted using the FQI calculated for each herbaceous wetland site and the FFQI for forested wetlands for CRMS sites within Barataria Basin (Figure 172), as previously described in the Coastwide Power Analysis section.

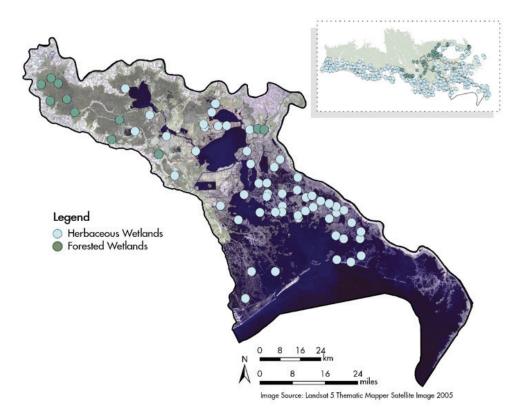


Figure 172. Existing CRMS sites in Barataria Basin used in the power analysis.

BARATARIA BASIN RESULTS

FORESTED WETLANDS

The results of the power analysis on the basinwide scale are similar to those on the coastwide scale and indicate that detecting linear trends in the annual mean from one year to the next requires a substantial sample size, however, a longer time step enables much finer changes to be detected (Table 79). Detecting a linear pattern in the annual means over time, averaged over

all factors, is also sensitive to the effect size applied (Figure 173). However, a threshold point is evident in Figure 173 where an increase in sample size beyond 23 results in a very small shift in the percentage of change, for the once every 5 years sampling regime. For example, from a sample size of 11 to 23, the difference in the y-axis is 5%, while a change from 23 to 75 results also results in a change of 5%. Further, the graphs indicate that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 79. Barataria Basin forested wetland FFQI power analysis summary results.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (FFQI)	# OF SITES
1: +1 years of data	25-20%	9.5-11.9	75-120
2: +5 years of data	6%	2.85	23
3: Once every 5 years	6%	2.85	75

i The average change in FFQI units was calculated as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

Figure 173. Barataria Basin forested wetland FFQI power analysis results.

Results indicate the percent change that can be detected given a range of sample sizes (α =0.05, β ≥0.80, σ =24.9). Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +5, and once every 5 years of data equate to 2, 6, and 2 years of data in total (including baseline), respectively.

HERBACEOUS WETLANDS

The results of the power analysis on the basinwide scale indicate that detecting linear trends in the annual mean from one year to the next requires a sample size of 24, however, a longer time step enables much finer changes to be detected (Table 80 and Figure 174). A threshold point is evident in Figure 174 where an increase

in sample size beyond 24 results in a very small shift in the percentage of change for the once every 5 years sampling regime. For example, from a sample size of 16 to 24, the difference in the y-axis is 5%, while a change from 24 to 48 results also results in a change of 5% (Figure 174). Further, the graphs indicate that as data are collected for longer periods of time, smaller changes can be detected, assuming the change is constant through time.

Table 80. Barataria Basin herbaceous wetland power analysis summary results.

HYPOTHESIS	% CHANGE	AVERAGE CHANGE (FQI):	# OF SITES
1: Differences among wetland types	n/a	10.5	32
2: +1 years of data	15-10%	10.4-7.0	24-65
3: +5 years of data	6%	4.2	8
4: Once every 5 years	6-5%	4.2-3.5	12

i The average change in FQI units was calculated as the average difference among means from year 0 to year 1 based on the effect size applied to the exemplary dataset as indicated in the "% change" column.

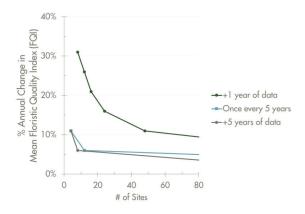


Figure 174. Barataria Basin herbaceous wetland power analysis results.

Results indicate the percent change that can be detected given a range of sample sizes (α =0.05, β ≥0.80, σ =12.9). Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +5, and once every 5 years of data equate to 2, 6, and 2 years of data in total (including baseline), respectively.

PONTCHARTRAIN REGION POWER ANALYSIS

The power analysis was conducted using the FQI calculated for each herbaceous wetland site and the FFQI for forested wetlands in the Pontchartrain Region (Figure 175), as previously described in the Barataria Basin Power Analysis section.

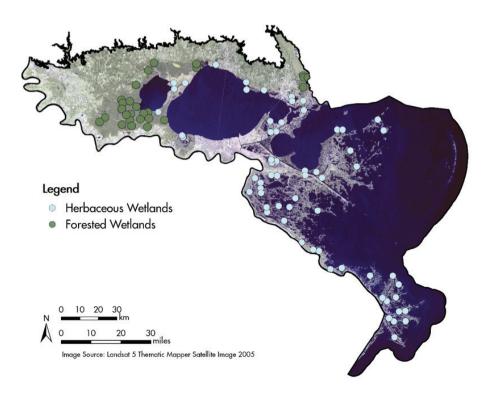


Figure 175. Existing CRMS sites in Pontchartrain Region used in the power analysis.

PONTCHARTRAIN REGION RESULTS

FORESTED WETLANDS

The results of the power analysis indicate that detecting linear trends in the annual mean FFQI from one year to the next requires a sample size greater than 50, however, a longer time step enables much finer changes to be detected with a lower sample size (Figure 176). A sample size of 16 would allow for detecting annual change of at least 16%, if data are collected once every 5 years. Further, a threshold point is evident in Figure 176 where an

increase in sample size beyond 16 results in a very small shift in the percentage of change.

HERBACEOUS WETLANDS

The results of the power analysis a sample size of 27 would allow for detecting annual change of at least 20%, if data are collected annually (Figure 177). Longer time steps allow for detecting smaller changes (i.e., less than 15%). Further, a threshold point is evident in Figure 177 where an increase in sample size beyond 16 results in a very small shift in the percentage of change.

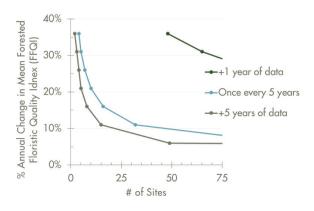


Figure 176. Pontchartrain Region FFQI power analysis results.

Results indicate the percent change that can be detected given a range of sample sizes (α =0.05, β ≥0.80, σ =28.2). Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +5, and once every 5 years of data equate to 2, 6, and 2 years of data in total (including baseline), respectively.

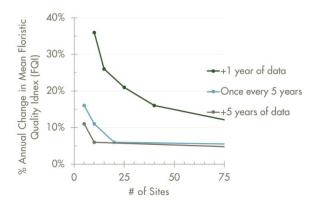


Figure 177. Pontchartrain Region FQI power analysis results.

Results indicate the percent change that can be detected given a range of sample sizes (α =0.05, β ≥0.80, σ =14.2). Legend indicates the number of years of data collection post-baseline (year 0). Thus, +1, +5, and once every 5 years of data equate to 2, 6, and 2 years of data in total (including baseline), respectively.

DETECTING CHANGE USING ACS

To monitor socioeconomic change at the community level, as defined in main report, it is necessary to analyze aggregations of census block groups. Areas with populations of less than 20,000, such as small towns, census tracts, and census block groups, will have annual ACS updates based on five previous years of data. Because sampling error generally increases as the sample size decreases, sampling error will be most apparent with these small census geographies (Williamson, 2008). However, the reliability of the population estimates can be improved by aggregating these estimates to a higher geographic level (Census Bureau, 2008).

The MOE for the aggregated count is calculated as:

$$MOE_{agg} = \pm \sqrt{\sum_{c} MOE_{c}^{2}}$$

(EQUATION 29)

Where MOE_c is the Margin of Error of the c^{th} component.

The example below illustrates how to calculate the MOE for the estimated total number of vacant houses within the 19 census block groups that have been identified previously as being significant (at the 95% confidence interval) clusters of renewable natural resource employment and outlier census block groups with high levels of renewable natural resource employment in the 2006–2010 ACS 5-year estimates (Table 81).

Table 81. Barataria Basin (2006-2010) vacant housing units¹ in renewable natural resource-dependent block groups.

BLOCK GROUP	ESTIMATE	MARGIN OF ERROR
220070503001	74	81
220750507004	31	52
220510279011	50	45
220070501001	63	64
220750508001	89	68
220750507001	44	54
220750502001	57	93
220750507002	39	51
220510279012	216	75
220510279021	451	85
220930405002	20	31
220070501002	86	85
220750507003	117	82
220750506002	31	35
220750508002	105	59
220750505003	36	45
220510280001	27	43
220510279023	248	125
220750506001	34	41

¹ Data from ACS estimate of occupancy status of housing units

The aggregate estimate for all census block groups in the study area is 1,819 vacant houses. Using MOEs of the individual block group estimates, we calculate the MOE for the aggregate estimate by calculating the square root of the sum of the squared MOEs.

$$MOE_{agg} = \pm \sqrt{(81)^2 + (52)^2 + (45)^2 + (64)^2 + \dots} = \pm 296$$
(EQUATION 30)

Thus, the derived estimate of the number of vacant houses in the natural resource-dependent census blocks in the Barataria Basin in the time period 2006-2010 is 1,819 and the MOE for the estimate is ± 296 .

Note that the Census Bureau standard for published MOEs is the 90% confidence level. To use a MOE corresponding to a different confidence level, it is necessary to multiply the published MOE by an adjustment factor (1.645 = 90% confidence level; 1.960=95% confidence level; 2.576=99% confidence level).

Conversion of the published ACS MOE to the MOE for a different confidence level can be expressed as:

$$MOE_{95} = \frac{1,960}{1,645} MOE_{ACS}$$

(EQUATION 31)

$$MOE_{99} = \frac{2,576}{1,645} MOE_{ACS}$$

(EQUATION 32)

Where MOEACS is the published 90% MOE for the estimate.

For the above example, the MOE corresponds to a 95% confidence level using the aggregated MOE. In this case, the MOE would be derived as follows:

$$MOE_{95} = \frac{1,960}{1,645}(296) = \pm 353$$

In this case, the derived estimate of the number of vacant houses in the natural resource-dependent census blocks in the Barataria Basin in the time period 2006-2010 calculated to the 95% confidence level would be 1,819 with a MOE for the estimate of ±353.

The same process can be used to derive the estimated total number of vacant houses in the same study area using the 2008–2010 ACS 5-year estimates (Table 82).

In this example, the derived estimate of the number of vacant houses in the natural resource-dependent census blocks in the Barataria Basin in the time period 2008-2012 is 1,689 and the MOE for the estimate is ±257, calculated at the 90% confidence interval.

Table 82. Barataria Basin (2008-2012) vacant housing units in renewable natural resource-dependent block groups.

BLOCK GROUP	ESTIMATE	MARGIN OF ERROR
220750507003	32	50
220750507004	33	53
220750507001	36	41
220750506002	10	18
220750506001	26	23
220750507002	12	19
220750508002	19	31
220750502001	54	85
220750508001	40	40
220750505003	51	44
220070501001	147	87
220070501002	84	78
220070503001	65	71
220510279012	165	65
220510279023	140	89
220510280001	24	40
220510279021	676	107
220510279011	0	12
220930405002	75	48

¹ Data from ACS estimate of occupancy status of housing units

Determining The Sampling Error of Population Estimates

The decennial census long form and ACS are both estimates derived from a sample of the population. As such, these estimates will generally not equal the population value because the survey did not measure all members of the population (U.S. Census Bureau, 2008). The standard error (SE) provides a quantitative measure of the extent to which an estimate derived from the sample survey can be expected to deviate from the true population value (U.S. Census Bureau, 2008). Similarly, the coefficient of variation (CV) provides a measure of the relative amount of sampling error that is associated with the sampling estimate. The CV is a function of the overall sample size and the size of the population of interest. In general, as the estimation period increases the sample size increases and the size of the CV decreases. These measures of variability and sampling error are important factors used to conduct tests of significance and analyze and interpret ACS data.

To derive the SE, divide the positive value of the MOE by the appropriate factor associated with that MOE. When using published ACS data estimated to the 90% confidence level, the SE can be expressed as:

$$SE = \frac{MOE_{ACS}}{1,645}$$

(EQUATION 34)

Where MOEACS is the positive value of ACS published MOE or the aggregated ACS MOE derived from the published data for the estimate.

The CV can be calculated from the SE derived above.

$$CV = \frac{SE}{\hat{x}} \times 100$$

(EQUATION 35)

Where X is the ACS estimate SE is the derived SE for the ACS estimate.

In the example above, the MOE associated with the number of vacant houses in natural resource-dependent block groups in the Barataria Basin estimated over the 2006-2010 time period is ± 296 . Estimated over the 2008-2012 time period, the MOE for the same location is ± 257 .The SEs for the estimates would be derived as:

$$SE_{2010} = \frac{296}{1,645} = 180$$

(EQUATION 36)

$$SE_{2012} = \frac{257}{1,645} = 156$$

(EQUATION 37)

Using these values along with the aggregated estimates, it is possible to determine the CV for the estimated number of vacant houses in natural resource-dependent block groups in the Barataria Basin for each of the ACS survey periods.

$$CV_{2010} = \frac{180}{1,819} \times 100 = 9.89\%$$

(EQUATION 38)

$$CV_{2012} = \frac{156}{1,689} \times 100 = 9.24\%$$

(EQUATION 39)

This means that the amount of sampling error present in the estimate is as little as 10% of the size of the estimate.

Determining The Statistical Significance When Comparing Estimates

When comparing two estimates, it is necessary to determine whether the observed difference is statistically significant or likely due to chance. The tests for significance of chance in ACS estimates use the estimates and their corresponding SEs. Algebraically, the significance test can be expressed as:

$$If \left| \sqrt{\frac{\hat{X}_{I} - \hat{X}_{2}}{SE_{I}^{2} - SE_{2}^{2}}} \right| > Z_{CL}$$

Then the difference between estimates \ddot{X}_1 – \ddot{X}_2 is statistically significant at the specified confidence level. CL

(EQUATION 40)

Where X_i is estimate i (=1,2) SE_i is the SE for the estimate i (=1, 2) $Z_{\rm CL}$ is the critical value for the desired confidence level.

Ideally, when comparing estimates from two multiyear periods of the same geography, change over time is best evaluated with multiyear estimates that do not overlap (e.g. comparing 3-year estimates from 2006-2008 with 3-year estimates from 2009-2011). Because most of the socioeconomic units of analysis used in SWAMP are based upon geographical units that are only released in the 5-year ACS (census blocks, block groups, and ZIP Code Tabulation Areas) and the first 5-year ACS covered the years 2005-2009, the first true comparison of nonoverlapping 5-year ACS estimates across the same geographical area cannot be conducted until the release of the 2010- 2014 ACS release sometime in 2015.

In some cases, it may be necessary to compare estimates from two overlapping time periods. In such situations, it is important to note that any observed differences are driven by the nonoverlapping years. For example, when comparing the house vacancy data used previously (based upon two overlapping 5-year ACS estimates, 2006-2010 and 2008-2012), the difference estimate should not be interpreted as a reflection of change from 2010 through 2012. Rather, because data for 2008, 2009, and 2010 are included in both estimates, any observed change would be driven by differences in the estimates in 2006-2007 and 2011-2012. To account for this sample overlap when comparing overlapping multiyear samples, the standard error calculation is modified and the test of statistical significance would follow the same process outlined above, with one modification to the significance test formula.

$$\left| \frac{\hat{X}_{I} - \hat{X}_{2}}{\sqrt{(I - C)\sqrt{8E_{I}^{2} - 8E_{2}^{2}}}} \right| > Z_{CL}$$

Then the difference between estimates $\hat{X}_{_1}$ and $\hat{X}_{_2}$ is statistically significant at the specified confidence level, CL

(EQUATION 41)

Where X_i is estimate i (=1, 2) C is the fraction of the overlapping years. SE_i is the SE for the estimate i (=1, 2). Z_{CL} is the critical value for the desired confidence level.

The example below uses data on the total number of vacant houses within the 19 census block groups with high levels of renewable natural resource employment in the 2006-2010 and 2008-2012 ACS 5-year estimates (Tables 1 and 3). In this example, the periods 2006-2010 and 2008-2012 overlap for three out of five years, so the fraction of overlapping years is 0.6.

$$\left| \frac{\hat{X}_{I} - \hat{X}_{2}}{\sqrt{(I - C)} \sqrt{SE_{I}^{2} - SE_{2}^{2}}} \right| = \left| \frac{1,819 - 1,689}{\sqrt{(1 - 0.6)} \sqrt{(180)^{2} + (156)^{2}}} \right| = 0.86$$
(EQUATION 42)

Since the test value (0.86) is less than the critical value for a confidence level of 90% (1.645), the difference in estimates is not statistically significant. Thus, we cannot be certain that the observed difference in the number of vacant housing units in the study area between the two time periods was not due to chance.

Calculating Margins of Error For Derived Proportions

When monitoring change in coastal communities, it is often necessary to derive proportions and percentages of the population where the numerator is a subset of the denominator. For example, when analyzing unemployment in natural resource-dependent communities, it necessary to examine the number of unemployed persons as a percentage of the total labor force, defined by the U.S. Census Bureau as those persons age 16 and over.

To calculate the MOE for derived proportions, the following algebraic calculation is used:

$$MOE_{p} = \underbrace{\pm \sqrt{MOE_{num}^{2} - (\hat{p}^{2} \times MOE_{den}^{2})}}_{\hat{X}_{den}}$$
(EQUATION 43)

Where MOE_{num} is the MOE of the numerator.

 MOE_{den} is the MOE of the denominator.

$$\hat{p} = \frac{\ddot{X}_{num}}{\hat{X}_{den}}$$
 is the derived proportion.

 X_{num} is the estimate used as the numerator of the derived proportion. X_{den} is the estimate used as the denominator of the derived proportion.

The example below shows how to derive the MOE for the estimated percentage of households in poverty in natural resource-dependent block groups within the Barataria Basin based on the 2008–2012 5-year ACS (Table 83).

The aggregate estimate for all households in poverty for all natural resource-dependent census block groups in the study area is 676, while the total number of households is estimated to be 6,241. The estimated proportion of household in poverty in the study area is:

$$\hat{P}_{agg} = \frac{\hat{X}_{poverty}}{\hat{X}_{total}} = \frac{676}{6,241} = 0.1083$$

Where $X_{poverty}$ is the ACS estimate of households in the study area that are at or below the poverty level and X_{total} is the ACS estimate of the total number of households in the study area.

Using the MOEs of the individual block group estimates, we calculate the MOE for the aggregate estimates by calculating the square root of the sum of the squared MOEs.

$$MOE_{povagg} = \pm \sqrt{(12)^2 + (12)^2 + (12)^2 + (38)^2 + \dots} = \pm 167$$
(EQUATION 45)

$$MOE_{totagg} = \pm \sqrt{(106)^2 + (29)^2 + (42)^2 + (77)^2 + (76)^2 + \dots} = \pm 399$$
(EQUATION 46)

The MOE for the estimated proportion is:

$$MOE_{agg} = \underbrace{\pm \sqrt{(167)^2 - [(0.1063)^2 \times (399)^2]}}_{6,241} = 0.026$$

Thus, the derived estimate of the proportion of households in poverty in natural resource-dependent block groups within the Barataria Basin is 0.1083, with a MOE of 0.026. In other words, approximately 10.83% of the households in the census block groups are at or below the poverty level, with a margin of error of 2.6%.

The same calculations can be run on the 236 census block groups in the Barataria Basin that are not significantly reliant upon renewable natural resource employment. The aggregate estimate for all households in poverty in these census block groups is 11,918 while the total number of households is estimated to be 117,524. The estimated proportion of households in poverty in the study area is therefore:

$$\hat{P}_{agg} = \frac{\dot{X}_{poverty}}{\hat{X}_{total}} = \frac{11,918}{117,524} = 0.1014$$
(EQUATION 48)

Table 83. Barataria Basin (2008-2012) households in poverty in natural resource-dependent block groups.

BLOCK GROUP	HOUSEHOLDS IN POVERTY	MARGIN OF ERROR	TOTAL HOUSEHOLDS	MARGIN OF ERROR
220750507003	0	12	190	106
220750507004	0	12	41	29
220750507001	0	12	51	42
220750506002	0	12	143	77
220750506001	33	38	245	76
220750507002	6	23	155	71
220750508002	85	49	283	85
220750502001	12	21	926	164
220750508001	4	7	138	62
220750505003	38	43	87	52
220070501001	74	69	372	111
220070501002	87	72	627	129
220070503001	19	22	476	106
220510279012	53	26	813	96
220510279023	67	40	548	135
220510280001	44	49	199	75
220510279021	17	27	166	69
220510279011	33	36	237	68
220930405002	104	58	544	71

¹ Data from ACS estimates of Poverty Status in the Past 12 Months by Household

Where $X_{poverty}$ is the ACS estimate of households in the study area that are at or below the poverty level and Xtotal is the ACS estimate of the total number of households in the study area.

Using MOEs of the individual block group estimates, it is possible to calculate the MOE for the aggregate estimates by calculating the square root of the sum of the squared MOEs.

$$MOE_{povagg} = \pm \sqrt{(55)^2 + (24)^2 + (57)^2 + (55)^2 + (12)^2 + ...} = \pm 790$$

$$MOE_{povagg} = \pm \sqrt{\frac{(155)^2 + (97)^2 + (82)^2 + (110)^2 + (108)^2 +}{...}} = \pm 1,744$$
(EQUATION 50)

The MOE for the estimated proportion is:

$$MOE_{agg} = \pm \sqrt{\frac{(790)^2 - [(0.1014)^2 \times (1,744)^2]}{117,524}} = 0.007$$
(EQUATION 51)

Thus, the derived estimate of the proportion of household in poverty in census block groups within the Barataria Basin that are not significantly reliant upon renewable natural resource employment is 0.1014 with a MOE of 0.007. In other words, approximately 10.14% of the households in the census block groups are at or below the poverty level, with a margin of error of 0.7%.

To determine if the observed difference is significant, we must determine the SE as in the previous example and then conduct a significance test. In this example, the MOE associated with the percentage of households in poverty in natural resource-dependent block groups in the Barataria Basin is being compared to the percentage of households in poverty throughout the rest of the Barataria Basin, both estimated over the 2008–2012 time period (Table 84).

Table 84. Barataria Basin (2008-2012) percentage household poverty in select census block groups.

BLOCK GROUP STATUS	ESTIMATE	MARGIN OF ERROR
Resource-Dependent	0.1083	0.026
Not Resource-Dependent	0.1014	0.007

The SEs for the estimates would be derived as:

$$SE_{resource} = \frac{0.026}{1,645} = 0.158$$

(EQUATION 52)

$$SE_{not \, resource} = \frac{0.007}{1,645} = 0.004$$

(EQUATION 53)

$$\left| \frac{\hat{X}_I - \hat{X}_2}{\sqrt{SE_I^2 + SE_2^2}} \right| = \left| \frac{0.1083 - 0.1014}{\sqrt{(0.026)^2 + (0.007)^2}} \right| = 0.26$$

(EQUATION 54)

Since the test value (0.26) is less than the critical value for a confidence level of 90% (1.645), the difference in estimates is not statistically significant. Thus, this test analysis shows there is no significant difference between the number of households in poverty in natural resource-dependent block groups and block groups that are not heavily reliant on renewable natural resource employment.

1110 RIVER ROAD SOUTH, SUITE 200 BATON ROUGE, LA 70808

+1 (225) 448-2813

THEWATERINSTITUTE.ORG