# **CPRA** Lower Barataria Sediment Diversion

David Escude', PE February 12, 2015





# The Project

- Diversion 2 Stages
  - 10% Design Analyses
  - 25% Design Analyses
- Civil, Geotechnical, Structural and Modeling
- Environmental, Social, or Economic Impacts Not Considered



# The Objective

- Identify the Most Cost Effective
- Most Environmentally Acceptable
- 50,000 cfs diversion when Mississippi River is at 1,000,000 cfs



# **Project Team**

- ARCADIS
- Coastal Protection and Restoration
  Authority
- The Water Institute of the Gulf
- LSU



# The Process

- 5 Sites Provided by TWI
- Key concept Utilize Existing Data
- Minimal data collection
- 10% Design reduce to 2 sites
- 25% Design recommend 1 site



# **Civil Engineering**

- Initial Site Layouts
- General Area of Preliminary Modeling Results
- Set Marshland Elevation/Channel Width and Length/Invert at Entrance





Source: The Water Institute of the Gulf.

#### **Concept Plans Developed for Each**







#### **Location Summary**

| Site            | Length<br>(miles) | SWR<br>(Cumulative) | Anchorage | Revetment | River<br>Power | Road<br>Crossings                                                   | Lane<br>Crossings | Structures<br>on Land                                                                   | Special<br>Features       |
|-----------------|-------------------|---------------------|-----------|-----------|----------------|---------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------|---------------------------|
| Magnolia        | 1.46              | 1.11                | Neg.      | Pos.      | 1st            | LA-23<br>(4 lanes)<br>Diamond Rd<br>(2 lanes)                       | 6                 | none                                                                                    |                           |
| Diamond         | 1.88              | 0.99                | Pos.      | Neg.      | 2nd            | LA-23<br>(2 lanes)<br>River Rd<br>(2 lanes)                         | 4                 | 3 mobile<br>homes; 2 single<br>family homes                                             |                           |
| Port<br>Sulphur | 0.89              | 0.46                | Pos.      | Neg.      | 3rd            | LA-23<br>(4 lanes)                                                  | 4                 | mobile office<br>trailers, metal<br>building                                            | existing large<br>MR dock |
| Empire          | 0.83              | 0.71                | Pos.      | Neg.      | 4th            | LA-23<br>(4 lanes)<br>Frontages<br>(4 lanes)<br>Hwy 11<br>(2 lanes) | 10                | 1 mobile home                                                                           | existing LA-23<br>bridge  |
| Buras           | 1.38              | 0.97                | Neg.      | Pos.      | 5th            | LA-23<br>(4 lanes)<br>Hwy 11<br>(2 lanes)<br>River Rd<br>(2 lanes)  | 8                 | 2 mobile<br>homes; 1 single<br>family home;<br>abandon gas<br>station and<br>metal bldg |                           |



# **Design Criteria**

#### **Channel segments**

- 1. Intake connection to Mississippi River
- 2. Control structure
- 3. Transition to trapezoidal channel

- 4. Trapezoidal channel
- 5. Outfall











# Outstanding Design Considerations

- Control structure at back levee?
- Bridges required at roads other than LA-23?
- Guide walls OR guide levees?
- Disposal of excavation materials?
- Work needed beyond back levee tie-in?
- Tainter gates (multiple bays) with stop log system for maintenance





# **Design Assumptions**

- Concrete channel lining
- Control structure with pile foundation
- Survey Data: Bathymetric data from ACOE revetment surveys along with LIDAR and USGS information will be utilized
- Hydraulic Data: Supplied by the WI.
- Guide Levee Elevation = 14.5



#### **Geotechnical Engineering**

- Reviewed existing reports and data
- Preliminarily analyzed levee and excavation slope stability for the highlighted sites:

| Location     | MRL                    | Back Levee       |
|--------------|------------------------|------------------|
| Magnolia     | Nov. 9                 | Nov. 5           |
| Diamond      | Nov. 10                | No Info (Nov. 6) |
| Port Sulphur | Nov. 10                | No Info (Nov. 6) |
| Empire       | Nov. 16                | Nov. 7           |
| Buras        | Limited Info (Nov. 11) | Nov. 7           |

USACE Coordination – CPT Installation



#### **Structural Engineering**

- Obtained structural design information for similar projects:
  - ✓ White Ditch, Myrtle Grove/Mid Barataria diversions
- Reviewed proposed gate types and sizes based on USACE guidelines
- Evaluated Control Structure, Back Levee Structure and Bridge











# **Cost Estimating**

- Determined preliminary project material and labor costs
- Divided project components and quantities
- Investigated real estate parcel boundaries and appraised values
- Contingency = 30%



#### Real Estate Cost Estimate – Land Value Matrix

| Category                              | Unit | Unit Value |
|---------------------------------------|------|------------|
| Unimproved Acreage                    | Acre | \$8,000    |
| Established Agricultural Acreage      | Acre | \$15,000   |
| Acreage with Structures/Homes         | Acre | \$20,000   |
| Previous Industrial Site              | Acre | \$20,000   |
| Structures Above Flood Level          | S.F. | \$105      |
| Structures Below Flood Level          | S.F. | \$35       |
| Single Family Homes Below Flood Level | S.F. | \$70       |
| Outbuildings                          | S.F. | \$15       |

- Based on research of local land values
- No public GIS database available for Plaquemines Parish



### Construction Cost Estimate – Site Summary

| Site         | Cost          | Contingency   | Total           |
|--------------|---------------|---------------|-----------------|
| Magnolia     | \$679,370,285 | \$203,811,086 | \$883,181,371   |
| Diamond      | \$760,606,748 | \$228,182,024 | \$988,788,772   |
| Port Sulphur | \$614,291,835 | \$184,287,551 | \$798,579,386   |
| Empire       | \$776,284,353 | \$232,885,306 | \$1,009,169,659 |
| Buras        | \$837,974,496 | \$251,392,349 | \$1,089,366,845 |



#### **Overall Site Ranking**

|                     |     |      |       |      | Port  |      |       |      |       |      |       |
|---------------------|-----|------|-------|------|-------|------|-------|------|-------|------|-------|
|                     | Wtg | Magr | nolia | Diar | nond  | Sul  | phur  | Er   | npire | B    | uras  |
| Category            | Fac | Rank | Score |
| Land Use Impacts    | 1.5 | 4    | 6     | 3    | 4.5   | 5    | 7.5   | 2    | 3     | 1    | 1.5   |
| Channel Length      | 1   | 2    | 2     | 1    | 1     | 4    | 4     | 5    | 5     | 3    | 3     |
| SWR                 | 3   | 5    | 15    | 4    | 12    | 1    | 3     | 2    | 6     | 3    | 9     |
| River Power         | 1   | 5    | 5     | 4    | 4     | 3    | 3     | 2    | 2     | 1    | 1     |
| Bridges/ Structures | 1   | 3    | 3     | 4    | 4     | 5    | 5     | 1    | 1     | 2    | 2     |
| Soil Composition    | 2   | 5    | 10    | 4    | 8     | 2    | 4     | 1    | 2     | 3    | 6     |
| Logistics           | 0.5 | 5    | 2.5   | 4    | 2     | 3    | 1.5   | 2    | 1     | 1    | 0.5   |
| LA-23 Bypass Lane   | 1   | 4    | 4     | 3    | 3     | 5    | 5     | 1    | 1     | 2    | 2     |
| Cost                | 2   | 4    | 8     | 3    | 6     | 5    | 10    | 2    | 4     | 1    | 2     |
| Total Score         |     |      | 55.5  |      | 44.5  |      | 43    |      | 25    |      | 27    |



#### **Reduced Sites to 2 Locations**





#### Phase 2 – 25% Design Analyses

- 2 Sites Magnolia and Diamond
- Flow 3D and HEC –RAS Modeling
- Refining Channel Components
- Refining Cost Estimating



#### Phase 2 – 25% Design Analyses

- Analyzed hydraulics to optimize sediment transport and minimize the size of control structures
- Evaluated cost-effective construction methods and innovative design to install the control structures and tie-in walls



#### **Modeling Refinement**

- Utilized HEC-RAS analyses to size the projects so they will convey the correct amount of flow for the specified design operation conditions.
- Simulated the entrance and exit conditions to confirm capacity.
- Used Flow-3D to improve the design of the approach or inlet and to simulate the flow exiting the diversion and to confirm the HEC-RAS results



#### **Calculated Sediment Water Ratios**

| Location             | Invert Elev      | SWR                |      |
|----------------------|------------------|--------------------|------|
| Location             | Approach Channel | Discharge Channel  |      |
|                      | -40              | -30                | 1.44 |
|                      | -38              | -28                | 1.39 |
| Diamond Port Sulphur | -36              | - <mark>2</mark> 6 | 1.35 |
|                      | -34              | -24                | 0.61 |
|                      | -30              | -20                | 0.51 |

Flow Condition: River Flow Rate = 1 Million CFS Diversion Flow Rate = 50,000 CFS

| Sediment Transport: | Size Class (microns) | 83.33          | 166.67    | 333.33      |
|---------------------|----------------------|----------------|-----------|-------------|
|                     | Descriptor           | Very Fine Sand | Fine Sand | Medium Sand |

$$SWR = \frac{\left(\frac{sum \ of \ sediment \ load \ (83-333 \ micron) in \ the \ intake \ channel}{sum \ of \ sediment \ load \ (83-333 \ micron) in \ the \ river}\right)}{\left(\frac{flow \ diverted \ in \ the \ intake \ channel}{flow \ in \ the \ river}\right)}$$

#### **Streamlines Colored by Fate**



Approach Channel Invert El. = -36 ft.

Diverted flow follows near the shoreline

#### **Streamlines Colored by Depth**



Approach Channel Invert El. = -36 ft.

Diverted flow follows near the shoreline

#### Velocity Contours (ft/s) (Slice plane cut at elevation = -20 ft)



#### **Structural Design Refinement**

- Refined design so that only 2 Tainter Gates would be required instead of 4.
- Reduced the material cost, the excavation footprint, and the temporary retaining structure



#### Phase 2 – 25% Design Analyses

- Analyzed the lining of the inlet, outlet, and conveyance channels
- Evaluated impacts to the navigation and drainage
- Broke down the cost components to more accurately determine the overall costs



#### **Cost Reduction – Shortened Outfall**





#### **Cost Reduction – Channel Sizing**



#### **Final Configuration**





#### **Location Summary**

| Site     | Length (miles) | Anchorage | Revetment | Lane Crossings | Road Crossings     | Structures<br>On Site | Special<br>Features            |
|----------|----------------|-----------|-----------|----------------|--------------------|-----------------------|--------------------------------|
| Magnolia | 0.65           | Yes       | No        | 4              | LA 23 (four lanes) | None                  | No back<br>levee is<br>present |
| Diamond  | 0.70           | No        | Yes       | 2              | LA 23 (two lanes)  | None                  | Existing<br>borrow pits        |



#### **Revised Cost Considerations 25% Design**

#### **Cost Estimating**

- ✓ 50% Concrete, 28% Earthwork, 12% Steel (Piles)
- Re-evaluating 5 unit prices (90% of construction costs)
  - First Priority (70%)
    - Concrete (50%)
      - ✓ Intake Structure (12%)
      - ✓ T-Walls (12%)
      - ✓ Channel Lining (10%)
      - ✓ Outfall Structure (8%)
      - ✓ Stabilization Slabs (8%)
    - Excavation (20%)

#### Second Priority (20%)

- Pipe Piles (7%)
- Sheet Pile (5%)
- Fill (5%)
- Dewatering (3%)



#### **Construction Cost Estimate**

|                        | Mag            | nolia                         | Dian           | nond                          |  |
|------------------------|----------------|-------------------------------|----------------|-------------------------------|--|
|                        |                | Approximate % of Construction |                | Approximate % of Construction |  |
| Element                | Estimated Cost | Cost                          | Estimated Cost | Cost                          |  |
| Control<br>Structures  | \$170,000,000  | 45%                           | \$175,000,000  | 45%                           |  |
| Retaining<br>Walls     | \$80,000,000   | 20%                           | \$100,000,000  | 25%                           |  |
| Channels               | \$90,000,000   | 25%                           | \$90,000,000   | 20%                           |  |
| Bridges/<br>Roadways   | \$30,000,000   | 10%                           | \$15,000,000   | 5%                            |  |
| Drainage               | \$0            | 0%                            | \$6,000,000    | 1%                            |  |
| Utility<br>Relocations | \$1,250,000    | <1%                           | \$1,250,000    | <1%                           |  |
| Other                  | \$16,000,000   | 5%                            | \$16,000,000   | 5%                            |  |

Overall cost reduced by 40% \$400M - \$500M



#### **Final Observations**

- Magnolia site currently has no back levee
- Magnolia site is located in a Federal Anchorage
- Diamond site will sever about 450 acres in drainage district
- Magnolia site is outside back levee protection system
- Overall Cost is within 5% for each alternative



#### **Additional Considerations**

- Confirm the approach elevation can it be raised to EL -36
- Additional hydraulic analyses with take into account sea level rise
- Sediment supply studies accounting for future river management schemes
- A comprehensive study of flows exiting the LBSD is recommended



#### Imagine the result

# **Questions/Comments**



