Ecosystem Modeling for Fish and Shellfish: What to Expect?

Kenneth Rose

Department of Oceanography and Coastal Sciences Louisiana State University

Ecosystem Modeling

• Fish and shellfish

- Responses to actions
- Higher level than individuals
- Recruitment, population, community, multispecies, food web

Expectations

 Temporal and spatial scales of the predictions

• How much of the biomass is accounted for

• Relative versus absolute predictions

 Appropriate level of confidence in predictions

Best Practices

Proposed Best Modeling Practices for Assessing the Effects of Ecosystem Restoration on Fish

Kenneth Rose, LSU Shaye Sable, Dynamic Solutions Donald DeAngelis, USGS Simeon Yurek, Univ of Miami Joel Trexler, Florida International UNiv William Graf, Univ of South Carolina Denise Reed, Water Institute of the Gulf

• Evolved from a report done for CPRA

Coastal Protection and Restoration Authority

450 Laurel Street, Baton Rouge, LA 70804 | coastal@la.gov | www.coastal.la.gov

2017 Coastal Master Plan Strategy for Selecting Fish Modeling Approaches

THE WATER INST OF THE GUL

Report: Version I Date: October 31, 2013 Prepared by: Kenneth A. Rose, Shaye Sable

Why?

- Large-scale restoration
 - Increasing
 - Expensive
 - Controversial
 - Necessary

Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities Ahead

Katharine N. Suding

Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720; email: suding@berkeley.edu

Keywords

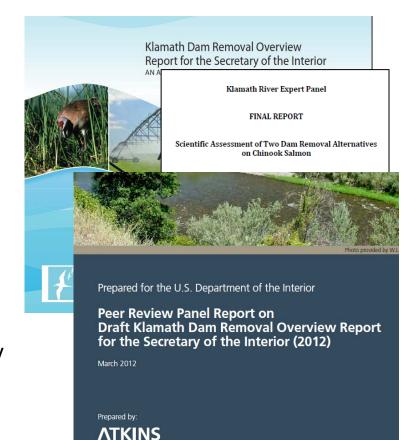
resilience, ecosystem restoration, restoration ecology, recovery, degradation, ecosystem services, environmental change, novel ecosystems

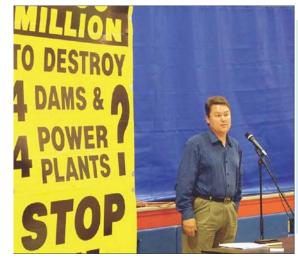
Review

Restoration of ecosystem services and biodiversity: conflicts and opportunities

James M. Bullock¹, James Aronson^{2,3}, Adrian C. Newton⁴, Richard F. Pywell¹ and Jose M. Rey-Benayas⁵

• Often, gravitates to fish and models


Klamath controversy continues


An agreement to remove four dams has been reached, but barriers remain

Klamath Propaganda: Who do you believe?

Independent Peer Review Says Klamath Dam Removal Science "Sound" and "Reliable" Klamath River: A Big Dam Controversy Finally Resolved

Whistleblower is taking his case to the public

Paul Houser, the Bureau of Reclamation's former scientific integrity adviser, says he was fired for voicing concerns that the decision to remove four Klamath River dams is being based on

politics and money not science. He spoke at a Tea Party meeting Sunday in Klamath Falls.

Environmental Economics, Volume 3, Issue 1, 2012

Andrew Schmitz (USA), P. Lynn Kennedy (USA), Julie Hill-Gabriel (USA)

Restoring the Florida Everglades through a sugar lanc benefits, costs, and legal challenges

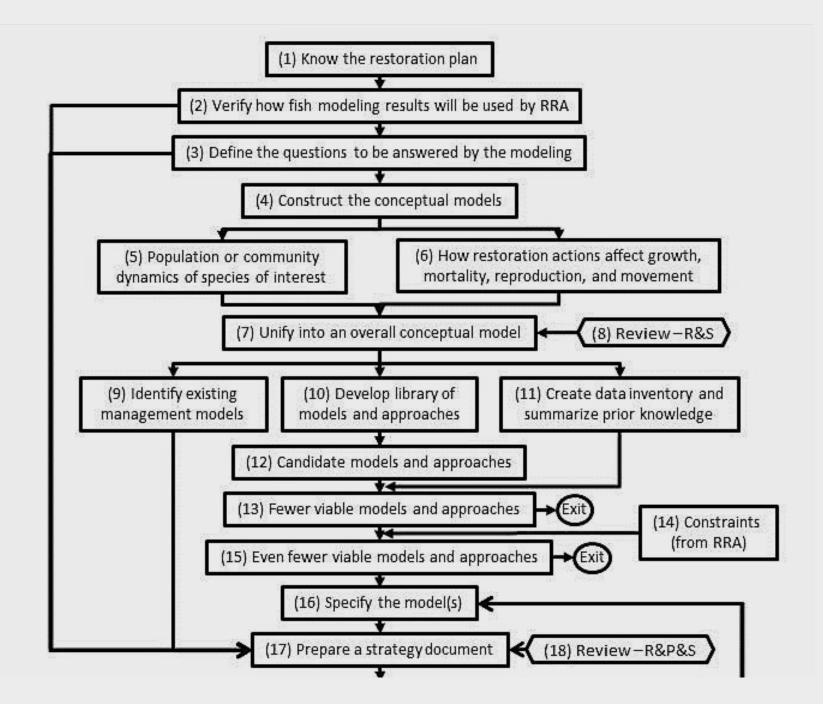
The Great Lakes Restoration Initiative: Background and Issues

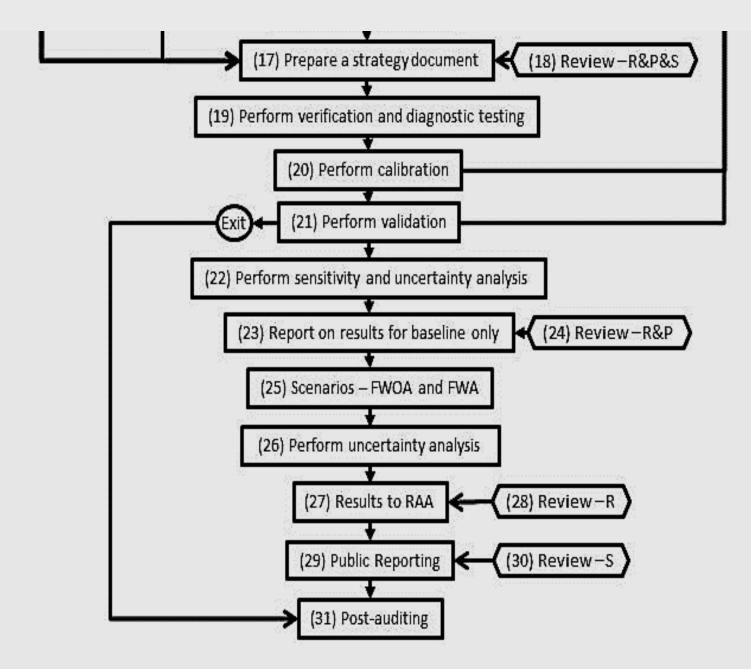
Pervaze A. Sheikh Specialist in Natural Resources Policy

September 30, 2013

Schemes

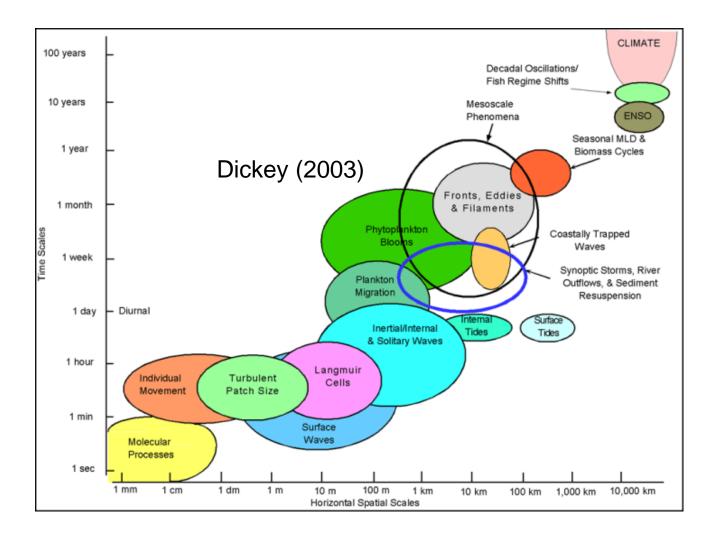
- Many have been suggested
- FAO, ACOE, papers
- We focus on fish and restoration
 - Steps
 - Concepts
 - Case studies




D. Holzworth¹, J. Mysiak^k, J. Reichl¹, R. Seppelt^m, T. Wagenerⁿ, and P. Whitfield^o

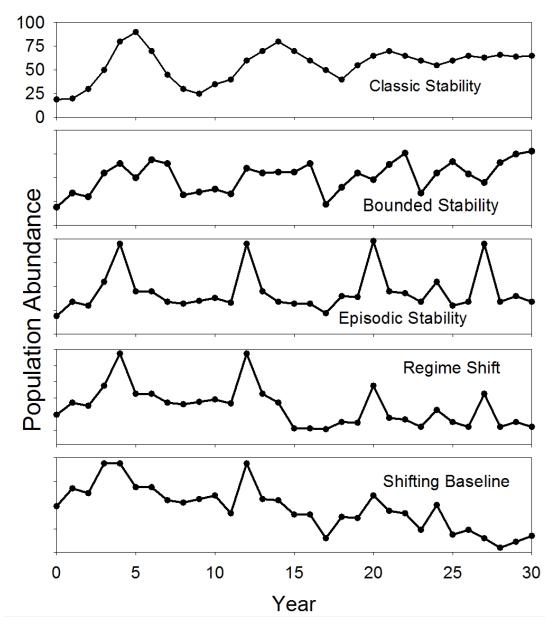
Scheme for Fish and Restoration

- 31 steps
 - 5 of the steps (model selection) were actually done in the CPRA report
 - Dr. Cam Ainsworth will discuss 3 more of the steps
- 13 concepts
- Proposed best practices



13 Concepts

- 1. Life cycles and strategies
- 2. Variability, uncertainty, stochasticity
- 3. Generality-precision-realism
- 4. Nonequilibrium theory
- 5. Scaling
- 6. Explicit versus implicit representations
- 7. Population definition
- 8. Density-dependence
- 9. Verification, calibration, validation
- 10. Sensitivity and uncertainty analysis
- 11. Multiple models
- 12. Food web dynamics
- 13. Hidden assumptions


13 Concepts

• Example: Scaling

13 Concepts

 Example: Nonequilibrium Theory, Stability, and Recruitment

Our Strategy

- Combine steps with concepts
- Illustrate key steps and concepts:
 - Everglades
 - Steps 2, 3, 11, 15, and aspects of 17, 19, & 22
 - Colorado River (Glen Canyon Dam)
 - Steps 4 and 11
 - Planning for the Louisiana 2017 Master Plan
 - Step 3 (Define questions)
 - Steps 10-15 (Model selection incl Data inventory)

Categorization Scheme

Biological		Spatial	Temporal	Reproduction	
Currency	Organization				
State variable	Single-species	Point	Seasonal	Forced recruitment	
Age-structured	Multispecies	Spatially-explicit	One year	Full life cycle	
Stage-structured	Community		Multiple years		
Individual-based	Foodweb Ecosystem				

Step 10 - Library

Table 5. Example listing of the initial models considered for the Louisiana Master plan. Six are shown from a total of more than 30. Sources: aWhipple et al. (2000); bWest et al. (2013); cde Mutsert et al. (2012);

^dBartell et al. (2010); ^eRoth et al. (2008); ^fAult et al. (1999).

Model	Location	Habitat	Currency	Biological Organization	Spatial	Temporal	Reproduction
Lotka- Volterra ^a	None	Not specific	State variable	Multispecies	Point	Multiple years	Implicitly represented
	Reason Eliminated: Model is highly aggregated and does not allow for sufficient realism nor the representation of the many effects to hydrology and water quality.						
Striped mullet stock assessment ^b	Louisiana	Coastwide	Age-structured	Single species	Point	Multiple years	Full life cycle
	Reason Eliminated: A statistical catch-at-age model does not permit easy simulation of the effects on hydrology and water quality.						
EwE°	Breton Sound, Louisiana	Estuary	Age-structured for some; State variable for others	Ecosystem	Point	Multiple years	Forced recruitment
	Reason Eliminated: EwE was not eliminated and was used to illustrate an approach; Gulf of Mexico and Louisiana versions exist.						
CASM ^d	Pontchartrain Basin, Louisiana	Estuary	State variables	Ecosystem	Point	1989-2007	Forced recruitment
	Reason Eliminated: CASM was not eliminated and was used to illustrate an approach; Louisiana versions exist.						
Shrimp IBM ^e	Louisiana and Texas marshes	Vegetation and open water	Individual juvenile brown shrimp	Single species	Spatially explicit	One year	
	Reason Eliminated: Not eliminated and used to illustrate an approach. However, the fine spatial resolution (meters) limits the geographic scale of model predictions.						
Spatial dynamic multistock production model ^f	Biscayne Bay, Florida	Coral, seagrass, hard and soft bottom	Age-structured	Multispecies	Spatially explicit	One year	Full life cycle
	Reason Eliminated: Not eliminated and used to illustrate an approach.						

Step 15 – Recommended Approaches

Table 6. A subset of the features from the full list for three of nine modeling approaches identified as being candidate approaches for the 2017 Master Plan. The subset of features illustrate the types of information found in the full version of the Table used for model selection.

Features	Ecopath with Ecosim (EwE)	CASM	Spatial Dynamic Multi-Stock Production Model
Examples	Breton Sound (BS): deMutsert et al. (2012)	Barataria Basin (BB): Dynamic Solutions (2013)	Biscayne Bay : Ault et al. (1999)
	West Florida Shelf (WFS): Chagaris (2013)	Mississippi River Gulf Outlet (MRGO): Bartell et al. (2010)	
Number of modeled species or groups	BS: 39 groups including phytoplankton, zooplankton, SAV, benthos	BB: 30 groups including phytoplankton, zooplankton, periphyton, zoobenthos	Two-species predator-prey model
	WFS: 60 groups including multiple plankton groups, seabirds, sharks	MRGO: 35 groups including phytoplankton, periphyton, zooplankton, zoobenthos, several aquatic vegetation groups	
Environmental inputs to existing models	BS: Monthly and annual salinity WFS: Mississippi River nitrogen loads	Daily surface light, water temperature, nutrients, depth, velocity, suspended sediments, Particulate organic carbon, salinity	Coral reef, seagrass, hard bottom, bare bottom habitats, salinity, temperature, velocity
Calibration and parameter Uncertainty	ECORANGER used to mass balance Ecopath model based on uncertainty, also to fit Ecosim to annual time series of abundance and catch data	Fitted to monthly biomass data for systematic calibration and parameter sensitivity using parameter estimation software called PEST (Dynamic Solutions, 2012)	Predicted growth of seatrout calibrated with sizes at age; seasonal abundance and densities of pink shrimp by habitat type validated with field data
Model transparency and ease of use	Free online software with a user interface makes it easy to use but difficult to customize the code; source code is now available but public version of source code continues to be developed	Input files and code customized for each project and source code must be obtained from model developer	Input files and code was customized for the project and source code must be obtained from the model developer

Final

- Repeat 2012 HSI analysis
- Improve HSI
- CASM (or TroSIM) and/or EwE – Cautions, e.g., movement
 - Suggestions
- Spatially-explicit IBM
 Focus is movement

Concluding Remarks

- Best practices scheme offers a systematic way to evaluate a modeling effort
 - Steps were done
 - Results of the steps
- Good modelers do most of these but often they do not document them in this format

Acknowledgements

This paper evolved from a variety of workshops involving some of the authors on how to use ecological and fish models, a report for the California Delta Science Program on how to develop and implement salmon life cycle models (with James Anderson, Michelle McClure, and Greg Ruggerone), and a report prepared by KAR and SS to the Louisiana's Coastal Protection and Restoration Authority on how to select fish models for evaluating restoration plans. KAR and SS want to thank CPRA and The Water Institute of the Gulf for their funding support to write this paper.

Contributions: KAR and SS developed the overall scheme; DLD, SY, and JCT provided the Everglades example; WG provided the Colorado River example; DJR worked with KAR and SS on the Coastal Louisiana example; all authors contributed to the final document.