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PRESENTATION HIGHLIGHTS

 Introduction to SFWMD including CERP

 SFWMD primary models

 Previous workshops on UA

 Uncertainty Analysis and Sensitivity Analysis Basic definition

 Sources and measures of uncertainty

 Uncertainty Analysis techniques

 Application to NSRSM to demonstrate the following:

• Local sensitivity analysis

• Global sensitivity analysis

• Uncertainty Analysis techniques

• Global Sensitivity Analysis

 Conclusion and lessons learned





SFWMD Mission

To manage and protect 

water resources of the 

region by balancing and 

improving water quality, 

flood control, natural 

systems and water supply

Coastal Watersheds & 
Estuaries

Everglades

Kissimmee

Lake Okeechobee

Mange Drought & Floods

Provide Water Supply

Protect & Restore Ecosystems

Prepare for Emergencies

Science, Planning, Engineering, & 
Construction

Land Management

Operation & Maintenance

Regulation

Water Supply Development

Objectives
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Soil Subsidence

Pre-drainage

Post-drainage

EAA Water Conservation 

Areas

Lake O



Current 

Flow

Our 

Ecosystem 

has been 

altered 

dramatically



Orlando

Florida Bay

Big Cypress

National 

Preserve

Ft. Myers

Okeechobee

WCAs

Lake 

CERP

Components

Everglades

National 

Park

Aquifer 

Storage 

& Recovery

Surface Water 

Storage Reservoir

Stormwater

Treatment Areas 

(STAs)

Reuse Wastewater

Seepage 

Management

Removing Barriers 

to Sheetflow

Operational 

Changes

• 6 pilot projects

• 15 surface storage areas
(~170,000 acres)

• 3 in-ground reservoirs
(~11,000 acres)

• 19 stormwater
treatment areas 
(~36,000 acres)

• 330 aquifer 
storage and 
recovery wells

• 2 wastewater 
reuse plants

• Removal of over 
240 miles of
canals, levees
and structures 

• Operational changes



Major C&SF Project Components

River Channelization

Herbert Hoover Dike

Water Conservation 
Areas

Protective Levees

• Everglades Agricultural 
Area

• Lower East Coast

Drainage Network

• Salinity Structures



What is a MODEL?

Input data at limited 

sites in space/time

Mathematical representation 

of the system processes and 

Numerical implementation

System's 

parameters & 

BC measured at 

limited points

Management 

Decisions

Prediction



 Integrated surface water 
groundwater model

 Regional-scale 3.2 x 3.2 km, daily 
time step

 Major components of hydrologic 
cycle

 Overland and groundwater flow

 Canal and levee seepage

 Operations of C&SF system

 Water shortage policies

 Extensive performance measures

 Provides input and boundary 
conditions for other models

South Florida Water Management Model (SFWMM)

www.sfwmd.gov/org/pld/hsm/models



Hydrologic Performance Measures

www.sfwmd.gov/org/pld/restudy/hpm

Dynamic Model for Stormwater

Treatment Areas



RSM

Hydrologic Simulation

Engine (HSE)

Management Simulation

Engine (MSE)

RSM Engines

South Florida Regional Simulation Model

SFRSM

• Model physical setup

• Simulate hydrologic 

processes

• Overland flow

• Groundwater flow

• Canal network 

• Calibration/validation 

of model parameters

• Use observed 

structure flows

• Simulate structure 

operations

• Implementation of 

operational rules

• Flood control rules

• Water supply policies

• Maintain minimum 

flows & levels

• Regional operational 

coordination



Numerical Mesh

 5,794 triangular cells

 Mean & standard deviation of 
mesh cell sizes: 1.01 mi2 & 
0.74 mi2

 Mesh cell size range: 0.05 
mi2 to 3.92 mi2

 WCA-3B has the finest 
resolution; BCNP has the 
coarsest resolution

 WCA-3A has a total of 984
cells

 Average cell size in WCA-3A
is 0.79 mi2; standard 
deviation is 0.24 mi2

0 9 18 27 36

Miles

Legend

Structure

Canals

Basins

Mesh

Model Boundary



Previous Workshops at SFWMD

 January 18-19, 1994 Workshop on Reduction of Uncertainties in Regional Hydrologic Simulation Models 
produced a report: 

• Sensitivity and Uncertainty Analysis in Hydrologic Simulation Modeling of the South Florida Water 
Management District Daniel P. Loucks and Jery R. Stedinger March 1, 1994

 August 1995:  An evaluation of the certainty of system performance measures generated by the South Florida 
Water Management Model Paul J. Trimble.

 January 15-17, 2002:   MODEL UNCERTAINTY WORKSHOP produced a report

• Quantifying and Communicating Model Uncertainty for Decision Making in the Everglades Upmanu Lall, 
Donald L. Phillips, Kenneth H. Reckhow and Daniel P. Loucks May 2002

 September 24, 2004: Uncertainty Workshop, Interagency Modeling Center : Presented by Christine 
Shoemaker, Jack Gwo and Wasantha Lal

 May 2005: Interagency Modeling Center Calculating MODFLOW Analytical Sensitivities Using ADIFOR for 
Effective and Efficient Estimation of Uncertainties Amir Gamliel, Mike Fagan and Maged Hussein

 August 2005: Interagency Modeling Center : Uncertainty of A Remediation Cost: A Demonstration of  the 
NLH Technique in the analysis of uncertainty of objective value in model application Jack Gwo and George 
Shih



Bias, Precision, and Total Error

Bias Error

Total Error

Precision 

Error

H True H simulated



 It determines the probability distribution of entire set of 

possible outcomes by considering the uncertainties in 

model input, parameters and algorithm.

As it pertains to SFWMM/RSM, UA is a procedures of 

mapping uncertainty bands of model 

input/parameters/structure to uncertainty bands of 

model outcomes (prediction).

Uncertainty Analysis (UA)



Uncertainty Analysis (UA)
Sensitivity Analysis (SA), definition 

• A procedure to determine the sensitivity of model 

outcomes to changes in its parameters. If a small 

change in a parameter results in relatively large 

changes in the outcomes, the outcomes are said to be 

sensitive to that parameter.



To understand which parameters are most critical for 

the model output

• To estimate parameter maximum and minimum values 

that provide plausible model outcomes for the purpose 

of providing some information about the parameter 

uncertainty. 

• To calculate sensitivity matrix (Jacobian) which is a 

requirement for uncertainty analysis techniques.

Uncertainty Analysis (UA)
Sensitivity Analysis (SA), purpose



 Is the investigation of the combined effect of input 
uncertainty and the input/output sensitivity on the 
output uncertainty.   

 Is the Isolation of the input parameters with most 
contribution to model output variance.

 Function of input uncertainty and output sensitivity 
to that input

 IA techniques:

• Stepwise Rank Regression Analysis

• Classification Tree Analysis

Uncertainty Analysis (UA)
Importance Analysis (IA), OR Global Sensitivity Analysis 



 Input variables, such as rainfall, ET, Landuse, ..etc., 
contain stochastic components and are pre-processed 
based on other models (physically or statistically based).  

 Model parameters are highly random and may change 
spatially and/or seasonally.

 Model formulation and parameterization are complex 
processes

 System Compartmentalization, and System Management 
and operation add more dimensions to the already 
complex system hydrology.

 With 500+ variables in such environment, Uncertainty 
Analysis is a challenge.

Uncertainty Quantification
Why is it so difficult ?



 Uncertainty due to our inability to fully understand 

the natural variability of input process to the 

model at a scale smaller than the gauging scale.  

Examples of these uncertainties are:

• Spatial variability such as rainfall, PET, and topography

• Temporal variability such as inflow and tidal boundary 

conditions

Sources of Uncertainty



SOURCES OF UNCERTAINTY, cont.

 Uncertainty due to measurement errors.  This 

covers all field measurements and published data 

based on which input and output data are directly 

used, or estimated using an external data 

processing (or modeling). 

 Uncertainty due to conceptual and implementation 

errors :-

• Error in specifying boundary conditions such as inflow 

and tidal boundaries and initial conditions such as stage.

• Model structural and numerical errors



SOURCES OF UNCERTAINTY, cont.

 Conceptual and implementation errors (cont.)

• Model parameter errors due to parameter modeling errors 

and/or calibration imperfection.

• Model inability to resolve variability smaller than the 

designated time step and mesh cell size 

• Temporal and spatial discretizations and their 

interdependence

 Model linkage to other models 

• Water quality and hydrologic model integration/coupling

• Input preprocessing models (demands, runoffs, rainfall, ..etc.



MEASURES AND SOME USES OF 

UNCERTAINTY 

 In its simple format, a mean and a standard deviation of a given 

output, performance measure or index.  This simplified 

uncertainty metric is rarely sufficient for a complete 

characterization of uncertainty. 

 Model output in terms of a range rather than a single value. This 

describes the system performance as a range of potential 

outputs, classes of likely events, or probability density function.

 Provides a level of confidence that a certain output is within an 

acceptable performance indicators.

 Provides probability that a certain output exceeds a specific 

target value. 



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 

ANALYTICAL: 

• Derive the output error distribution (e.g., variance) 

• Feasible for simple models with few stochastic 

(random) input parameters.

• Given the complexities and large variables in our 

models, this approach does not go very far.



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 

 FIRST-ORDER SECOND MOMENT ANALYSES:

• This method derives the output variance from input parameter 

variance / covariance functions

• This method can identify the relative contribution of each 

parameter to the output variance.

• Suitable when parameter-output relationship is linear or mildly 

nonlinear.

• If the linearity condition is not “properly” satisfied, then second 

order term of Taylor expansion must be considered and a 

correction term must be applied  

• Refer to Loucks & Stedinger 1994, Trimble 1995, and Lal 

1995.



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 
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 FIRST-ORDER SECOND MOMENT ANALYSES:



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 

Stochastic Numerical Models: 

• Develop and solve the governing equation with 

stochastic component

• Probability distribution is inherent in the solution 

• Very simple models compared to SFWMD system

• Numerical solution of such a stochastic equation is far 

more complex than the already challenging solution of 

the deterministic equation.



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 

Monte Carlo with Random Sampling

• Recognize some input variables/parameters as random.  

Identify their probability distributions by expert judgment and 

historical data.

• For each simulation model run, draw the actual values of 

input variables/parameters from their respective distribution. 

Record the corresponding output.



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 

Monte Carlo with Random Sampling (cont.)

• With considerable number of simulations and many recorded 

outputs (all are equally likely outcomes), obtain output 

probability distribution.  

• Massive number of simulations is needed

• Input parameters/variables are likely correlated both in space 

and time and hence sampling must be drawn from a joint 

probability distribution that reflect both scales.  The 

construction of such distributions is not easy



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 

Bayes’ Theorm

P(K) is the prior (marginal) probability of K (e.g., Hydraulic Conductivity).

P(K|Q) is the conditional (posterior) probability of K, given Q (e.g., 

Observed flow). 

P(Q|K) is the conditional probability of Q given K. It is also called the 

likelihood of K for observed Q.  P(Q|K) ≈ L(K|Q). A measure of the 

ability  of “K” set in predicting the Observed “Q” set.

P(Q) is the prior or marginal probability of Q, and acts as a normalizing 

constant.

Bayes' theorem in this form gives a mathematical representation of how 

the conditional probability of event K given Q is related to the converse 

conditional probability of Q given K.



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 

Bayesian Monte Carlo analysis 

• Combine prior information about the input parameter 

distribution with the ability of these parameters to 

describe available data on state variables.

• Start with the traditional Monte Carlo sampling from 

prior distributions.

• Compare each simulation results to field 

observations of the model state variables (e.g., flow) 

and Score each results with respect to the ability of 

each parameter set to describe the observed data.

•



TECHNIQUES TO QUANTIFY 

UNCERTAINTY 

Bayesian Monte Carlo analysis

• Scoring system can be as simple as yes/no binary 

function or it can be based on a likelihood function 

P(Q|K) ≈ L(K|Q).  

• Perform sufficient simulations for the n parameters and 

build n-dimensional matrix describing the marginal 

parameter uncertainty and the entire error covariance 

structure.

• You can do one of two things: define model prediction 

uncertainty or investigate the parameter individual 

contributions to overall uncertainty.



TECHNIQUES TO 

QUANTIFY 

UNCERTAINTY 

Generalized 
Likelihood 
Uncertainty 
Estimation

Monte  
Carlo 
Markov 
Chain



DISADVANTAGE OF MONTE CARLO 

TECHNIQUE

 Large number of simulations is expensive 

computationally especially for distributed models with 

long run time

Risk of obtaining unrealistic combinations of input 

values especially if the input variables/parameters are 

NOT independent.



TECHNIQUES FOR COMPUTATION 

EFFICIENCY

 Latin Hypercube Sampling

• It reduces the number of input sampling variability

• For each input variable/parameter, the probability 
distribution is divided into segments of equal probability

• The algorithm assures sampling only once from each 
segment.

• Modification to this algorithm considers the 
variables/parameters interdependency 



Latin hypercube sampling method



NSRSM UNCERTAINTY ANALYSIS 

OBJECTIVES **

 Considering a select group of parameters:

• Provide local sensitivity analysis

• Provide uncertainty analysis using more than one 
technique.

• Provide Global sensitivity analysis



STEPS**

1. Selection of a limited set of key inputs and outputs 

based on previous modeling studies and expert 

opinion.

2. Application of formal local sensitivity analysis (via 

Singular Value Decomposition of the input-output 

sensitivity matrix) to identify significant input 

uncertainties. 

3. Assignment of probability distributions to characterize 

uncertainty in selected model inputs and their 

correlation structure (based on the best available data).



STEPS (cont.)**

4. Application of uncertainty quantification techniques to 

determine the uncertainty in model output (s) as a 

function of the uncertainty in model inputs.

5. Application of global sensitivity (uncertainty 

importance) analysis techniques to identify those 

model inputs that are key contributors to the overall 

uncertainty in model output(s).  This results in an 

importance ranking that is dependent on both input 

uncertainty and input-output sensitivity, whereas the 

importance ranking based on SVD factorization is only 

dependent on input-output sensitivity. 



1) Input/Output Selection
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25492

25087

NSRSM Model Boundary

Ridge and Slough Marsh

Mesic Pine Flatwood

Rivers

Tamiami Transect

T712_East Transect

Land cover types chosen for parameter variation and locations of output metrics.



1) Input/Output Selection : Model Parameters**

Ridge and Slough 

Marsh

Mesic Pine 

Flatwood

Parameter Description
Data range 

in NSRSM

Original 

Value

Abbrevia-

tion

Original 

Value

Abbrevia-

tion

Alpha
Conveyance –

a parameter

0.1 - 0.4 

mostly 0.3
0.325 alph511 0.3 alpha712

Detent

Conveyance –

detention 

storage

0.1 0.1 detent511 0.1 detent712

Xd

ET –

extinction 

depth

3-10 3 xd51 10 xd712

Kveg
ET –

kveg
-0.1 - 1.0 0.74 kveg511 0.74 kveg712

Storativity Hydrogeology 

– specific yield

.2 – 1.0 

mostly .2
0.8 sv511 0.2 sv712



Metric Type Location Abbreviation

Stage 25492, land cover 511 25492stage

Stage 25087, land cover 712 25087stage

Transect Flow land cover 511 Tamiami

Transect Flow land cover 712 T712_East

1) Input/Output Selection : Output Metric**



2) SVD-Based Local Sensitivity Analysis:

SVD Singular Value Decomposition**

Consider Sensitivity Matrix (Jacobian) AmXn , with an 
entry ai,j

 αij = the sensitivity of the jth simulated output metric to 
the ith parameter

 hj = the jth simulated output

 ki = the ith parameter

m = # of observations, n = # of parameters



mjni
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Matrix A can be decomposed into three matrices V, 

S, and U 

 S is a diagonal matrix of singular values of A (i.e., the value 
that makes the corresponding row of matrix A = 0.)

 VT gives the coefficients of linear combinations of the original 
parameters that give rise to new, independent parameter 
groups

 U gives the coefficients of linear combinations of the  
observation groups. 

 The parameter groups and observation groups are related by 
the diagonal matrix S

 The relative magnitude of the singular values in S indicates the 
relative importance of each of the parameter groups

T

nxnmxnmxm VSUA ..



TVVR .

Other Important Matrices for Sensitivity 

Analysis

 Resolution Matrix gives insight 

regarding parameter resolution 

(parameter interdependence)

i

j

ij
x

y




a

 Correlation Matrix gives insight regarding parameter resolution 
(parameter interdependence)

jjii

ij
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 The singular values, U and VT, the resolution matrix, and the 

correlation matrix are the primary sources of information used 

to construct groups of parameters, understand their 

interdependence, and analyze their sensitivity



RESULTS:  SVD-BASED SENSITIVITY ANALYSIS
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RESULTS:  SVD-BASED SENSITIVITY ANALYSIS

Singular values from the SVD decomposition, 

Cutoff to control data error: smin/smax < 0.001



RESULTS:  SVD-BASED SENSITIVITY 

ANALYSIS

U matrix elements showing linear coefficients of the output groups



RESULTS:  SVD-BASED SENSITIVITY 

ANALYSIS

Elements of the VT matrix showing linear coefficients of parameter groups



RESULTS:  SVD-BASED SENSITIVITY ANALYSIS

Bubble plot of the Resolution matrix 
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RESULTS:  SVD-BASED SENSITIVITY ANALYSIS

Bubble plot of the Correlation matrix 
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3) CHARACTERIZATION OF 

PARAMETER UNCERTAINTY

Ridge and Slough 

Marsh (.325)

Mesic Pine Flatwood 

(.3)

Value CDF

.06 0

.3 .15

.35 .95

.4 1

Value CDF

.3 0

.35 .10

.45 .90

.6 1

Manning’s n

Ridge and Slough 

Marsh (.1)

Mesic Pine Flatwood

(.1)

Value CDF

.1 0

.6 1

Value CDF

.1 0

.2 1

Detention Storage 

Conveyance

Ridge and Slough 

Marsh (.88)

Mesic Pine Flatwood

(.84)

Value CDF

.7 0

.8 .5

.9 1.0

Value CDF

.4 0

.6 .40

.7 .90

.8 1

Vegetation Crop Coefficient 

Ridge and Slough 

Marsh (3.0)

Mesic Pine Flatwood

(10.0)

2-4 Normal 

Distribution

3.0 mean .33 

standard dev.

8-12 Normal 

Distribution

10.0 mean 0.667 

stand dev

Extinction Depth 

ET



CHARACTERIZATION OF PARAMETER UNCERTAINTY

Ridge and Slough 

Marsh (.8 with 

lookup)

Mesic Pine Flatwood

(.2)

.1-.3 Normal 

Distribution

.2 mean .033 stand 

dev

Value CDF

.5 0

.6 .25

.7 .50

.8 1.0

Storage Coefficient 



4) UNCERTAINTY Quantification:

 Monte Carlo Simulation

 First Order Second Moment Analysis



UNCERTAINTY PROPAGATION **:
Comparison of MCS and FOSM results.

FOSM MCS

Mean Stdev Mean Stdev

25492stage 1.26 0.12 1.26 0.14

24087stage 0.13 0.054 0.13 0.047

Tamiami 2.55E+08 3.25E+07 2.70E+08 7.86E+07

T712_East -8.49E+07 9.80E+06 -8.25E+07 1.13E+07



UNCERTAINTY IMPORTANCE ANALYSIS:

Global Sensitivity **

 Is the investigation of the combined effect of input 
uncertainty and the input/output sensitivity on the 
output uncertainty.   

 Is the Isolation of the input parameters with most 
contribution to model output variance.

 Two techniques are employed:

• Stepwise Rank Regression Analysis

• Classification Tree Analysis



UNCERTAINTY IMPORTANCE ANALYSIS:

Stepwise Rank Regression Analysis

 Fit a linear response surface between the rank-
transformed input and output variables and  Perform a 
sensitivity analysis on this “surrogate” model.

 Include variables to the regression in a stepwise 
fashion. The order by which variables are added to the 
regression model corresponds to their order of 
importance.

 The order of importance is measured by the relative 
contribution to the regression variance.

 The stepwise regression process continues until the 
input-output model contains all of the input variables 
that explain “statistically significant” amounts of 
variance.



Stepwise Rank Regression Analysis
Stepwise-Regression Analysis 

Results for metric [25492stage].

Rank Variable R2 SRC

1 KVEG511 0.379 -0.632

2 ALPHA511 0.545 0.425

3 TOPOSELECT 0.653 0.322

4 DETENT511 0.750 0.315

5 KVEG712 0.819 -0.264

Stepwise-Regression Analysis 

Results for metric [25087stage].

Rank Variable R2 SRC

1 KVEG712 0.971 -0.981

2 ALPHA712 0.981 0.099

3 DETENT712 0.982 0.044

Stepwise-Regression Analysis 

Results for metric [Tamiami].

Rank Variable R2 SRC

1 KVEG511 0.557 -0.679

2 ALPHA511 0.742 -0.428

3 KVEG712 0.810 -0.259

4 DETENT511 0.861 0.214

5 XD511 0.871 0.103

Stepwise-Regression Analysis 

Results for metric [ T712_East].

Rank Variable R2 SRC

1 KVEG712 0.620 0.800

2 ALPHA712 0.889 0.508

3 DETENT712 0.941 -0.228

4 ALPHA511 0.943 0.048



UNCERTAINTY IMPORTANCE ANALYSIS:

Classification Tree Analysis

• The decision tree is generated by recursively finding the 
variable splits that best separate the output into groups 
where a single category dominates.  

• The importance of the variables is demonstrated by their 
order of split, with the variables at the top of the 
classification tree (the first variables split) considered 
more important than the variables involved in later splits



Classification Tree Analysis 

|
KVEG511< 0.8409

ALPHA511>=0.2766

high
49/0

low 
1/18

low 
0/32

Classification tree for metric [25492stage].



Classification Tree Analysis
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CONCLUSION **

 SVD, Stepwise rank regression and classification tree analysis are useful tools in 

isolating and identifying parameters contributing to model output sensitivity and 

uncertainty.

 Monte Carlo Simulation is a powerful (but expensive) tool for full characterization 

of model output uncertainty. 

 FOSM analysis can be a useful tool in lieu of MCS provided that 1) Gaussian and 

stationarity assumptions are reasonably satisfied, and 2) mean and variance are 

the user’s primary interests. 

 Among the parameters considered, Crop Coefficient Kveg, and (Manning 

Conveyance Alpha with lesser extent) have the greatest contribution to model 

output uncertainty.  



CONCLUSION **

 The uncertainty analysis was “sensitive” to the location of the time slice 

selected.

 CDFs obtained at various time slices exhibited non-stationarity that must 

be addressed and must be linked to the subsequent use of the 

uncertainty analysis.  



DISTRICT LONG TERM GOAL FOR 

UNCERTAINTY ANALYSIS **

 Identify, isolate, and quantify those sources of 
uncertainties with significant and unique contribution 
to the overall model output uncertainty.

Develop a suite of Uncertainty and Sensitivity 
Analysis tools for all the district hydrologic models.  

Provide the enduser with a decision making tool that 
enables him/her infer the model output uncertainty 
given all variables and parameters presented above. 

 Identify areas of improvement in all sources of 
uncertainties identified above.



Lessons learned

UA is a long term journey that needs to be harbored in 
house.

 In house staff to lay out short and long term plans for 
uncertainty analysis.

Pursue UA short term goals for model “endorsement”, 
for proof of concepts, pilot studies, …etc. 

Pursue UA long term goals 

• Develop simpler (more parsimonious) models in consistency 
with the available data.

• Manage performance measures and enduser expectations.



Lessons learned

• Pursue more comprehensive UA (beyond parameterization) 
including other factors such as input data, boundary 
conditions, management rules, …etc.

• Initiate a data collection program to allow for real time 
analysis and model updating  reduce uncertainty

• Pursue Bayesian Networks and Bayesian Approach to 
combine priori and posterior information to improve 
prediction. 

Don’t be “married” to one school of thought, to one 
type of expertise, or to one technique. 

 The utilization of uncertainty results by the end user 
is yet another difficult task. 


